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Department of Computer Engineering, İzmir Institute of Technology
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ABSTRACT

ESTIMATION OF LOW SUCROSE CONCENTRATIONS AND CLASSIFICATION
OF BACTERIA CONCENTRATIONS WITH MACHINE LEARNING ON

SPECTROSCOPIC DATA

Spectroscopy can be used to identify elements. In a similar way, there are recent

studies that use optical spectroscopy to measure the material concentrations in chemical

solutions. In this study, we employ machine learning techniques on collected ultraviolet-

visible spectra to estimate the level of sucrose concentrations in solutions and to classify

bacteria concentrations. Some metal nanoparticles are very sensitive to refraction index

changes in the environment and this helps to detect small refraction index changes in the

solution. In our study, gold nanoparticles are used and we benefited from this property to

estimate sucrose concentrations. The samples in different low sucrose concentration solu-

tions are obtained by mixing the sucrose measured with precision scales with pure water

and then the UV-Vis spectrum of each sample is measured. For the bacteria concentration

solutions, spectra for six different bacteria concentrations are captured. Spectra of the

same solutions are also captured before adding the bacteria. For each of these solutions,

four sets are prepared where gold nanoparticles are not grown (minute 0) and grown for 4

minutes, 10 minutes and 12 minutes. After the dataset preparation, these spectrum mea-

surements are transferred into MATLAB environment as sucrose concentration dataset

and bacteria solution dataset. Then the necessary preprocessing steps are performed in

order to get the most informative and distinguishing information from these datasets. The

raw measurement values and processed spectrum measurements are trained with shallow

Artificial Neural Networks (ANN) on MATLAB Deep Learning Toolbox and Support

Vector Machine (SVM) on MATLAB Statistics and Machine Learning Toolbox. When

the results of the conducted machine learning experiments are examined, success rate is

promising for the estimation of sucrose concentrations and very high for classification of

bacteria concentrations in pure water solution.
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ÖZET

SPEKTROSKOPİK VERİ ÜZERİNDE MAKİNE ÖĞRENMESİ İLE DÜŞÜK
SÜKROZ KONSANTRASYONLARININ KESTİRİMİ VE BAKTERİ

KONSANTRASYONLARININ SINIFLANDIRILMASI

Spektroskopi elementleri tanımlamak için kullanılabilir. Benzer şekilde, kimyasal

çözeltilerdeki madde konsantrasyonlarını sınıflandırmak için optik spektroskopiyi kul-

lanan yeni çalışmalar vardır. Bu çalışmada, çözeltilerdeki sükroz konsantrasyonunun se-

viyesini tahmin etmek ve bakteri konsantrasyonlarını sınıflandırmak için toplanan ultravi-

yole-görünür bölge (UV-Vis) spektrumlarda makine öğrenme tekniklerini kullanıyoruz.

Bazı metal nanopartiküller, ortamdaki kırılma endeksi değişikliklerine karşı çok hassastır

ve bu özellik çözeltideki küçük kırılma endeksi değişikliklerini tespit etmeye yardımcı

olur. Çalışmamızda altın nanoparçacıkları kullanılmış ve sükroz konsantrasyonlarını tah-

min etmek için bu özellikten faydalanıldı. Farklı düşük sükroz konsantrasyon çözeltilerin-

deki numuneler, hassas skalalarla ölçülen sükrozun saf suyla karıştırılmasıyla elde edilir

ve daha sonra her bir numunenin UV-Vis spektrumu ölçülür. Bakteri konsantrasyon

çözeltileri için 6 farklı bakteri konsantrasyonu spektrumları kaydedilir. Bakteriler ek-

lenmeden önce de aynı çözeltilerin spektrumları kaydedilir. Bu çözeltilerin her biri için,

altın nanoparçacıkların büyütülmediği (dakika 0) ve 4 dakika büyütüldüğü, 10 dakika

büyütüldüğü ve 12 dakika büyütüldüğü dört set hazırlanır. Veri seti hazırlığından sonra,

bu spektrum ölçümleri sükroz konsantrasyonu veri seti ve bakteri çözeltisi veri seti olarak

MATLAB ortamına aktarılır. Daha sonra bu veri setlerinden en bilgilendirici ve ayırt edici

bilgilerin elde edilmesi için gerekli ön işleme adımları uygulanmaktadır. Ham ölçüm

değerleri ve işlenmiş spektrum ölçümleri MATLAB Derin Öğrenme Araç Kutusu’ndaki

yapay sinir ağları (YSA) ve MATLAB İstatistik ve Makine Öğrenmesi Araç Kutusu’ndaki

Destek Vektör Makineleri (DVM) ile eğitilmiştir. Yapılan makine öğrenmesi deneylerinin

sonuçları incelendiğinde, başarı oranı sükroz çözeltisindeki bakteri konsantrasyonlarının

sınıflandırılması için ise çok yüksektir.
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CHAPTER 1

INTRODUCTION

Spectroscopy is a methodology for measuring the interaction between matter and

electromagnetic radiation. One of the advantages of spectroscopy methodology is es-

pecially by choosing ultraviolet and visible electromagnetic spectrum, needed hardware

for measurement becomes very cheap. Moreover, measurements can be performed in a

very short time and frequently without any overhead. But the general problem with this

methodology, it is not reliable to use in certain scientific and medical fields with its raw

measurements because the obtained data is not exactly informative enough at first look.

It is needed to process the raw measurements in order to obtain the most informative and

distinguishing information from it by applying machine learning methodologies.

Two different datasets are collected with the help of localized surface plasmon res-

onance of immobilized golden nanoparticles. The plasmon resonance can be altered either

by the refractive index of the solution or by absorption of some species to the nanopar-

ticle surface. The resonance frequency of the metal nanostructures is sensitive to small

variations in the refractive index that may occur in the near region of these nanostruc-

tures. This sensitivity makes plasmid nanomaterials attractive to molecular bioanalytical

devices. In our study, a set of liquid solutions with different sucrose concentrations and

another set of solutions with different bacteria concentrations are used with the golden

nanoparticles. For each of these solutions, golden nanoparticles are grown for several

minutes and separate spectra are recorded to measure the effect of particle size in esti-

mation. The first dataset is varying low sucrose concentration solutions and their UV-Vis

wavelength spectra of each of the samples are measured in different minutes. The second

one is varying bacteria concentrations are prepared in golden particle solutions in order

to expand the surface area of adhesion of bacteria and the UV-Vis wavelength spectra of

each of the samples in well plate cells are measured in different minutes.

These collected datasets are used on different structures of shallow artificial neural

networks (ANN) and support vector machine (SVM) to determine exact sucrose concen-

tration and classify the correct bacteria solution in terms of with/without bacteria solution

and low/high bacteria concentration.
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1.1. Motivation

As it is mentioned in the introduction, by spectroscopy and especially targeting

visible spectrum, measurement operation becomes cheaper and faster and also using

golden nanoparticles techniques are increased the obtaining most informative measure-

ments from solutions to determine a sucrose concentration or bacteria contamination.

However, these measurements cannot be reliable at first look. To deal with such kind of

problem, machine learning techniques and algorithms can be considered in order to ex-

tract more informative and representative data from the input and use it for getting better

predictions.

Unlike standard spectrum measurements, datasets are collected by choosing UV-

Vis wavelengths, the spectral range, and resolution(precision) feature of the sensor. This

approach provides to have cheaper estimations for sucrose concentrations and predictions

for a bacteria concentration class within the UV-Vis spectrum.

Using localized surface plasmon resonance of immobilized gold nanoparticles to

obtain the datasets and especially for the bacteria experiments magnifying it by the golden

particles techniques are a new approach to make spectrum measurements. Also, for these

two datasets, It is the first time being processed and used in estimation. Throughout the

thesis work, both the methodology of collection of the datasets and the possibility to make

proper predictions by using these spectrum measurements are tested.

1.2. Thesis Goals and Contributions

This thesis aims to train Artificial Neural Networks and Support Vector Machine

in order to make successful predictions through spectrum measurements of low sucrose

concentrations and bacteria solutions. The overall contributions in this thesis work can be

summarized as follows:

Ultraviolet-Visible wavelengths are used for spectrum measurements which gives

the interaction between matter and electromagnetic radiation but within these wavelengths,

a variety of hardware can be found for measurements and it would be cheaper and faster

to make measurements.

We handle these two different spectroscopy datasets. Sucrose concentration esti-

mation is modeled as a regression problem, whereas bacteria concentrations are classi-
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fied. For these two problems, we train different structures of shallow Artificial Neural

Networks (ANN) and Support Vector Machine (SVM).

We conduct our experiments with

i. raw measurements

ii. peak values of the spectroscopy measurements

iii. Principal Component Analysis (PCA) applied dataset

iv. Linear Discriminant Analysis (LDA) applied dataset

We face the curse of dimensionality problem on the bacteria solution dataset be-

cause of the insufficient number of samples during the implementation of LDA. That is

why we apply preprocessing methods as

i. Linear Discriminant Analysis with pseudo-inverse (LDAP)

ii. First PCA then LDA implementation

We use these two extra methods to overcome the curse of dimensionality problem for

bacteria solution dataset experiments.

1.3. Outline of the Thesis

This thesis is organized as follows. The next chapter provides a literature overview.

Chapter 3 gives background information about spectroscopy, Principal Component Anal-

ysis (PCA), Linear Discriminant Analysis (LDA), Artificial Neural Networks (ANN) and

Support Vector Machine (SVM). Chapter 4 includes sucrose concentration regression ex-

periments by ANN and SVM with raw measurements and preprocessing methods. Chap-

ter 5 includes bacteria solution classification experiments by ANN and SVM with prepro-

cessing methods. Finally, Chapter 6 provides final remarks and discusses future research.
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CHAPTER 2

RELATED WORK

In the past studies, determination of different types of concentrations like glu-

cose concentration, sucrose concentration in solutions by using optical spectroscopy has

been the subject of research for many years. With the increasing success of the machine

learning algorithms, especially artificial neural network is used for estimation through

spectroscopy measurements. Exemplary studies are usually on blood glucose estimation.

Zeng et al. (2013) work on spectroscopy measurements at 1400-1800 nm(near infrared)

wavelengths and artificial neural network (ANN) are used. Three distinct wavelengths

from each of two different spectra, total 6 values are used in the input layer of ANN.

Again, Trabelsi et al. (2012) studied on blood glucose level by preparing different blood

samples and obtained measurements in the range of 1400-2500 nm. Manually selected 6

wavelengths from the spectrum are used to train ANN. By Chua et al. (2014), this time

without using ANN method, the response of LED light with only 1450 nm wavelength is

used for estimation of the glucose concentration in the blood.

In a more recent study, by Gulderen et al. (2016) near infrared (950-1100 nm

range) wavelengths and MATLAB Neural Network Toolbox is used to determine glucose

solution. 44 different glucose concentrations are measured and 36 of them are used for

training and validation datasets, 8 of them are using for testing. In the ANN input layer,

only the highest spectrum measurements are used. Estimation success is calculated as

the real solution of the error in the ANN regression of concentration by relative error.

In most unsuccessful case, the relative error is up to 18% for estimation. Introduced

by Malik et al. (2016), the concentration of glucose in the urine samples are prepared,

the spectrum obtained from the large 500 vectors of the input layer is diminished to 8

value with Principal Component Analysis (PCA). Conducted by Liu et al. (2008), glucose

concentrations of 2100-2400 nm wavelength measurements are given as input. This time

size of the dataset is not reduced. In this study, ANN method, least square regression and

principal component regression methods are compared and ANN performance is reported

to be higher. Ozbalci et al. (2013), a different spectrum called the Raman spectrum is

used to determine the amounts of 4 different sugars (glucose, fructose, sucrose, maltose)
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in honey samples, and the success of partial least squares and ANN are compared. ANN

input layer is determined as 4 which is reduced by PCA and single hidden layer structure

with multiple numbers of neurons in them are tested as ANN structures. Also, Vı́tková

et al. (2012) try to identify archaeological materials as biominerals by applying linear

discriminant analysis (LDA) to spectra measurements obtained by stand-off laser-induced

breakdown spectroscopy and artificial neural networks (ANN) are trained with them. By

Mezgil et al. (2017), low sucrose concentrations are estimated in 400 nm and 800 nm

spectrum with different shallow ANN structures.

Anker et al. (2008) propose, where the metallic nanoparticles are smaller than the

wavelength of the incoming light, this electron cloud release is localized on the plasmon

nanoparticle surface. Because of its optical properties, gold and silver nanoparticles are

used for most localized surfaces. The plasmon resonance can be altered by either solvent

refractive index or by adsorption of some species onto the nanoparticle surface. Also,

in Martinsson et al. (2014), the plasmon resonance frequency of metal nanostructures is

highly dependent on the dielectric properties surrounding the environment, which allows

for the detection of small changes in the refractive index that may occur in the imme-

diate vicinity of the nanostructures. The refractive index sensitivity makes plasmonic

nanomaterials attractive as signal transducers in bioanalytical devices to monitor molec-

ular binding events. According to these studies, golden nanoparticles are used to collect

spectroscopy measurements of sucrose and bacteria concentrations.
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CHAPTER 3

RESEARCH BACKGROUND

3.1. Spectroscopy

The study of the interaction between matter and electromagnetic radiation is called

Spectroscopy. Also, the name of Optical Spectroscopy can be used. The light is some

form of electromagnetic radiation that is a type of energy travels in waves. That is why

every electromagnetic wave has a particular wavelength. Every wavelength has a differ-

ent characteristic. These characteristics can be used for determination, discrimination or

condition of the matter. Such as radio waves, microwaves, infrared, visible spectrum,

ultraviolet, x-rays and gamma rays are the examples of radiation types as electromag-

netic spectrum. The only part of the electromagnetic spectrum can be seen by the human

eye is the visible spectrum whose wavelengths are between about 400 nm and 700 nm,

Tkachenko (2006). The entire range of wavelengths of electromagnetic radiation can be

seen on Figure 3.1. From longest wavelength to the shortest, radiation types are radio,

microwave, infrared, visible, ultraviolet, X-ray, and gamma ray.

The interaction of the spectroscopy can happen as:

• Absorption spectroscopy

• Emission spectroscopy

• Reflection spectroscopy

• Impedance spectroscopy

• Resonance spectroscopy

• Inelastic scattering

Throughout this thesis, we deal with absorption spectroscopy. The spectroscopy

interaction can be measured in nature by special spectroscopy sensors. An experimental

setup of absorption spectroscopy can be seen on Figure 3.2.
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3.2. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction technique to

convert a set of correlated variables by using orthogonal transformation to find a new

set of ranked dimensions. PCA considers the separability of features by looking at the

variance of each feature because it is reasonable assumes that features that present high

variance are more likely to have a good split between classes, by Jolliffe (2002). The

basic steps of PCA:

1. Calculate the covariance matrix of the dataset without using output vector.

2. By using the calculated covariance matrix, calculate corresponding eigenvectors

and eigenvalues.

3. Sort the calculated eigenvalues by decreasing order.

4. Select the number of new feature set and create a matrix from eigenvectors of se-

lected number of biggest eigenvalues.

5. Perform the transformation of new dataset by multiplying the old dataset with the

matrix formed from selected eigenvectors.

By this way new dimensions that have the biggest variance in terms of feature set can be

constructed. If we look at the formulation, let X be the feature set of the dataset we want

to be apply PCA. X has a set of p-dimensional vectors which have k number of samples:

w(k) = (w1, ..., wp)(k)

t(i) = (t1, ..., tl)(i), given by tk(i) = Xi · w(k) for

i = 1, ..., n

k = 1, ..., l

T = XW as W is a square matrix as p· and this matrix columns are eigenvectors of

XTX .

3.3. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a feature extraction technique like PCA

which is a generalization of Fisher’s linear discriminant. The main difference of this
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method is during the feature extraction, it also considers the dataset class information.

This technique is especially useful for classification problems. Because LDA considers

the distance between classes and within class samples (Izenman (2008)). On Figure 3.3,

the difference in handling the variance selection of LDA and PCA can be seen separately.

The basic steps of LDA can be defined as:

1. Calculate the mean vectors of each class of the dataset.

2. Calculate Sb(between classes) and Sw(within classes) scatter matrices.

3. By using the scatter matrices, calculate corresponding eigenvectors and eigenval-

ues.

4. Sort the calculated eigenvalues by decreasing order

5. Select the number of new feature set and create a matrix from eigenvectors of se-

lected number of biggest eigenvalues

6. Perform the transformation of new dataset by multiplying the old dataset with the

matrix formed from selected eigenvectors.

That is why Sb(between classes) and Sw(within classes) scatter matrices are cal-

culated as following:

Sb =
g∑

i=1

Ni(xi − x)(xi − x)T

Sw =
g∑

i=1

(Ni − 1)Si =
g∑

i=1

Ni∑
j=1

(xi,j − xi)(xi,j − xi)T

We solve the generalized eigenvalue problem for the matrix S−1w Sb to obtain the

linear discriminants. This means that Sw is supposed to be invertible. But sometimes in

the real-world, the number of samples can be lower than the sum of the number of features

and number of classes in the dataset. This leads to the curse of dimensionality problem.

This means Sw becomes a singular matrix. In order to beat this problem, a few options

are:

• Elimination of features manually to overcome the curse of dimensionality problem

• Using applying pseudo-inverse to singular Sw matrix

• Apply PCA and reduce the feature set just enough to beat the curse of dimension-

ality problem
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Figure 3.1. Electromagnetic spectrum and wavelengths of light, from Khan Academy
(2019)

Figure 3.2. Experimental setup of absorption spectroscopy, from Wikipedia (2019)

Figure 3.3. Difference of handling feature set for LDA and PCA, from Towards Data
Science (2019a)
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3.4. Artificial Neural Network (ANN)

Artificial Neural Networks (ANN) is a machine learning technique which is in-

spired by the working principle of biological neural networks. ANN consists of a set of

algorithms to interpret data through a kind of machine perception, labeling or clustering

raw input. By training, it recognizes patterns as numerical values of vectors. Thus real-

world data can be processes such as text, sound, an image with the condition of translation

into numeric values.

Primitive implementation of a first neural network was a perceptron, which has

one neuron only by accepting a different number of inputs and outputs one value. The

basic structure and work principle can be seen on Figure 3.4. This neuron also has an

activation function which contains a mathematical model to decide the output value ac-

cording to the sum of products of input values and their weights. As each input value has

a weight feature which determines the effectiveness of the input value.

A simple artificial neural network consists of three main layers as input layer,

hidden layer, and output layer. This time instead of one perceptron, it has multiple neurons

but it preserves the working logic. In recent neural networks, different types of activation

functions can be used as sigmoid, hyperbolic tangent and rectified linear units functions.

On Figure 3.5, an example of a shallow artificial neural network structure can be seen.

In order to obtain a pattern in ANN, through the dataset, we need to train it with

a dataset. Just like the gradient descent algorithm also ANN can be trained by this. The

training of ANN is possible with back-propagation algorithm which uses the loss function

in order to update weights of the ANN till gradient descent algorithm requirements are

done.

The general loss function: L(y, ŷ) = 1
m

∑m
i=1(yi − ŷ)2 as ŷ is the output of ANN

and y is the real value we want to get from ANN. By gradient descent, in each iteration

of back-propagation, weights are updated by the derivative of the loss function as

wj = wj − α · ∂ L
∂wj

α corresponds to learning rate which decides the gradient descent momentum.
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3.5. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine learning technique which

aims to build hyper planes to make classification or estimation about given labeled dataset,

Wang (2005). For regression problems we will call it as Support Vector Regression

(SVR). A basic example to show how SVM builds a classifier hyper planes can be seen on

Figure 3.6. It is obvious in the figure, SVM builds its classifier hyper plane by choosing

the hyper planes that have maximum margin in terms of groups separability. This SVM

hyper plane functions are called as kernels. SVM can have Linear, Polynomial or Radial

basis function kernel. As a linear kernel example for two class separation, let there are n

number of samples as

(−→x 1, y1), ..., (
−→x n, yn)

where yi indicates the class information as −1 or 1 and −→x i is a two dimensional vector.

SVM will have a classifier hyper plane as:
−→w · −→x − b = 0

Also, it will have auxiliary hyper planes to help for determination of optimal hyper plane

as
−→w · −→x − b = −1
−→w · −→x − b = 1

These auxiliary hyper planes helps to determine the sample class information as
−→w · −→x i − b ≤ −1, yi = −1
−→w · −→x i − b ≥ 1, yi = 1

Geometrically the distance between two hyper planes 2
‖−→w ‖

By these two decision boundaries, we get:

yi(
−→w · −→x i − b) ≥ 1 and 1 ≤ i ≤ n

The objective of SVM becomes in order to maximize 2
‖−→w ‖ minimize ‖−→w ‖.

3.5.1. MATLAB Environment

MATLAB is a closed source programming language and computing development

environment which is developed by MathWorks. It has variety of toolboxes which pro-

vide ready to use functions and applications. Especially Parallel Computing Toolbox,

Deep Learning Toolbox and MATLAB Statistics and Machine Learning Toolbox are used
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for the experiments of this thesis on MATLAB 2018b. Deep Learning Toolbox is useful

to create shallow neural networks or deep neural networks to perform regression or clas-

sification experiments and MATLAB Statistics and Machine Learning Toolbox is used to

apply support vector machine (SVM) for classification experiments and support vector

regression (SVR) for regression experiments, from MATLAB (2019a). To speed up the

training time, Parallel Computing Toolbox is used which enables to benefit from GPU

computation power, from MATLAB (2019b).

As we mention, MATLAB Deep Learning Toolbox is very useful to create shallow

artificial neural networks. Also, it has a lot of options to determine the training function,

neuron activation function, training function, performance function. All these options

come with default ones. In this thesis we use hyperbolic tangent(tanh) transfer function

option as activation function, scaled conjugate gradient backpropagation option which

updates weight and bias values according to the scaled conjugate gradient method as

a training function, mean squared normalized error option as performance function for

regression and cross entropy option as performance function for classification.

For MATLAB Statistics and Machine Learning Toolbox comes with a lot of op-

tion to apply SVM and SVR algorithms. All these options come with default ones. In this

thesis for SVM implementation, we use linear kernel function and for SVR implementa-

tion, we user polynomial kernel function with polynomial order of 3. Also, for SVM and

SVR we set ”Standardize” flag as true which scales and centers each sample according to

their weighted column mean and standard deviation.
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Figure 3.4. Perceptron structure, from Towards Data Science (2017)

Figure 3.5. An example of a shallow artificial neural network structure, from Data
Wow (2018)
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Figure 3.6. An example of support vector machine classification approach, from To-
wards Data Science (2019b)
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CHAPTER 4

ESTIMATION OF SUCROSE CONCENTRATION

4.1. Sucrose Concentration Dataset

Thanks to IZTECH Department of Bioengineering, a different number of low

sucrose concentrations in solutions with ultrapure water is prepared in well plate cells.

These low sucrose concentration solutions are determined by mass as 0%, 10%

(100mg/mL), 20% (200mg/mL), 30% (300mg/mL), 40% (400mg/mL), 50% (500mg/mL).

The solid sucrose samples are weighed using analytical balance dissolved in ultrapure

water (conductivity = 18MΩ) with the help of 100 mL measure and made into stock solu-

tions. After that, each well plate is measured by Ultraviolet-Visible(UV-Vis) spectroscopy

with the help of localized surface plasmon resonance of immobilized gold nanoparticles.

The selected wavelengths are between 300 nm and 800 nm with a precision of 1 nm. This

means for each prepared sucrose concentration in a well plate cell, we got 501 differ-

ent measurements. All these measurements are performed at different times as minute 4,

minute 5, minute 6, minute 7, minute 8, minute 9, minute 10, minute 11, minute 12 and

minute 13. These times are the durations of gold growth in solution. The selected wave-

lengths and measurement times are determined by IZTECH Department of Bioengineer-

ing to determine which is, within these spectra, the most distinguishing and informative

spectrum values. We investigate this in this thesis by machine learning methods.

After all the experiment setups and measurements, we get our sucrose dataset

number of samples as seen Table 4.1. Each sample contains 501 different measurements

which mean 501 different features. In order to examine the sucrose solution dataset,

spectroscopy measurement values at each wavelength are drawn with different colors for

each different sucrose concentration.

As seen in Figures 4.1, 4.2 and 4.3, determining the sucrose concentration by the

specific minute of spectroscopy measurements is not possible by the naked eye because

of all lines overlapping with each other. Especially for some minutes, overlapping lines

rates are less than the other minutes. But it is clear that for all minutes nearly after 600 nm
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wavelength, sucrose concentrations start to spread. This means measurements at specific

wavelengths can be more informative to distinguish sucrose concentration.

In Figures 4.1, 4.2 and 4.3 graphs, we try to explain the discrimination of sucrose

concentrations. But actually, it is not a classification problem because in the real world

challenges, it is intended to predict a scalar value for sucrose concentration, for example,

blood glucose level problem. So it becomes a regression problem for us.

First, we try to solve this problem by previous researches approaches like using

entire spectrum values or using the peak value of spectrum measurements. Then we inves-

tigate different feature extraction techniques to build a system to get the most informative

and distinguishing values from these features.

Table 4.1. Sucrose concentration dataset number of samples for each minute

0%
(0mg/mL)

10%
(100mg/mL)

20%
(200mg/mL)

30%
(300mg/mL)

40%
(400mg/mL)

50%
(500mg/mL) TOTAL

Minute 4 141 141 141 141 141 141 846
Minute 5 141 141 141 141 141 141 846
Minute 6 141 141 141 127 141 141 832
Minute 7 141 141 141 87 132 141 783
Minute 8 152 141 141 141 181 141 904
Minute 9 141 141 141 141 188 141 893

Minute 10 141 141 123 141 188 141 875
Minute 11 134 141 94 141 188 141 839
Minute 12 141 135 152 141 47 141 757
Minute 13 141 94 141 141 47 141 705

Figure 4.1. Sucrose Concentrations Measurements at Minute 4 Graph
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Figure 4.2. Sucrose Concentrations Measurements at Minute 8 Graph

Figure 4.3. Sucrose Concentrations Measurements at Minute 12 Graph
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4.2. Sucrose Concentration Experiments

To solve the sucrose concentration regression problem, we treat separately each

minute samples between minute 4 and minute 13. Because of its popularity and usage in

previous researches like Zeng et al. (2013) and Trabelsi et al. (2012), we want to use feed-

forward shallow Artificial Neural Network (ANN) method. Thanks to MATLAB Deep

Learning Toolbox, we use its environment to create and train multiple different structures

of ANNs. For ANN activation function in each neuron, hyperbolic tangent(tanh) transfer

function is used. As training function, scaled conjugate gradient backpropagation option

is selected which updates weight and bias values according to the scaled conjugate gradi-

ent method. For ANN performance function, Mean squared normalized error performance

function is used. Regularization parameter can be set to any value between 0 and 1. So

0.7 is decided by trial and error. Also in each ANN structure, input values of input neu-

rons and output values of output neuron values are normalized with mapminmax option

which normalizes the minimum and maximum values between -1 and 1 accordingly. Also

in order to compare the results wit different machine learning technique, Support Vector

Regression on MATLAB environment with MATLAB Statistics and Machine Learning

Toolbox is used. As a kernel function polynomial kernel is selected by trial and error.

Polynomial kernel function order is determined as 3 which is the default value. But again

with trial and error, the final decision is the keep the default option. In addition, input

values are scaled by the corresponding weighted column mean and standard deviation by

passing ”Standardize” parameter to the related training function.

In the sucrose dataset, we have 501 different features. But also with the help of

different preprocessing methods given in 4.2.1, the feature set size is changed. That is

why the number of inputs for each machine learning methods are changed accordingly.

For the ANN hidden layer, we want to try a different number of hidden layers

and neurons to observe the hidden layer structure effect on the regression success. These

hidden layer types consist of two main structures as one layer hidden layer structure and

two layers hidden layer structure. These hidden layer structures can be seen in Tables 4.2

and 4.3.

Before starting training of each different structures of ANNs, the separate minute

measurements of the dataset are divided into 3 parts as 60% for the training set, 20% for

the validation set and 20% for the test set. Also the separate minute measurements of

the dataset are divided into 2 parts as 80% for the training set, 20% for the test set dur-
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ing the SVR experiments because SVM training does not consistent of multiple different

structures. During this division, the samples are shuffled by supporting that each dataset

group had an almost equal ratio of different samples as 0%, 10% (100mg/mL), 20%

(200mg/mL), 30% (300mg/mL), 40% (400mg/mL), 50% (500mg/mL). In some cases,

this rule is slightly broken because the total number of sucrose concentration samples are

changing for each minute can be seen in Table 4.1. This dataset division operation is

conducted at the beginning of each machine learning training.

Table 4.2. ANN Hidden Layer Structures with 1 Hidden Layer

Number of Neurons in the Hidden Layer
5

10
15

Table 4.3. ANN Hidden Layer Structures with 2 Hidden Layers

Number of Neurons in the First Hidden Layer Number of Neurons in the Second Hidden Layer
5 5
5 10

10 10

4.2.1. Dataset Preprocessing

As it is mentioned above, before the regression experiments, based on the previ-

ous researches like Gulderen et al. (2016) and Malik et al. (2016), sucrose concentration

dataset is approached with different techniques since we try to obtain the most informa-

tive and distinguishing values from the sucrose concentration feature set. Also applying

the same regression algorithm on these preprocessed datasets, we intend to compare the

effectiveness of these methods on the spectroscopy datasets.

4.2.1.1. Using Entire Feature Set

The first option is using all spectroscopy wavelength measurements without using

any feature extraction technique. The feature set consists of 501 wavelength measure-

ments between 300 nm and 800 nm with a precision of 1 nm. They are treated as each
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of them are distinct and meaningful features to predict sucrose concentration. Thus for

the sucrose concentration dataset, we tried to make sucrose concentration estimations by

using these 501 different spectroscopy measurement values. Which means, one sample

consisted of 501 input values as spectroscopy measurements and one output value as the

sucrose concentration.

4.2.1.2. Using Peak Values

As it is performed in Gulderen et al. (2016), for each sample the biggest spec-

troscopy measurement (peak value) from 501 different spectroscopy measurements be-

tween 300 nm and 800 nm. is selected. For the sucrose concentration dataset, we try

to make sucrose concentration estimations by using this one wavelength value. For each

sample, the wavelength that gives the highest absorption is selected. Thus in the new

dataset, one sample consists of one input value as the biggest spectroscopy measurement

and one output value as the sucrose concentration.

4.2.1.3. Applying Principal Component Analysis

Dimensionality reduction is one of the essential tasks in machine learning. It not

only solves the curse of dimensionality problem (as we will face in Chapter 5) but it also

eliminate non-discriminative features which may deteriorate the estimation/classification

performance (Baştanlar and Özuysal (2014)). Thus in our sucrose dataset, we applied

reduction to 501 features. Instead of direct elimination of features, we benefited from a

feature extraction technique called Principal Component Analysis (PCA) similar to stud-

ies of Malik et al. (2016) and Ozbalci et al. (2013).

Just after the dataset division operation on sucrose solution dataset as 3 parts as

60% for the training set, 20% for the validation set and 20% for the test set during the

ANN experiments. Also, the dataset division operation on sucrose solution dataset is

conducted as 2 parts as 80% for the training set, 20% for the test set during the SVR ex-

periments because SVR training does not consistent of multiple different structures. PCA

is performed on training and validation set only. Because we do not want our machine

learning algorithm to receive any preliminary information from test samples.
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For each minute samples in sucrose solution dataset, PCA is applied as explained

above and for 501 feature, 501 different eigenvalue and eigenvectors are calculated. These

eigenvalues are ordered by their value because bigger eigenvalue indicates a bigger effect

on the whole dataset. According to the sum of total eigenvalues, first 10 biggest eigenval-

ues give us over than 99.99% of variation in the dataset. Thus the eigenvectors of the first

10 biggest eigenvalues are used to convert the dataset from 501 features to 10 features.

4.2.1.4. Applying Linear Discriminant Analysis

Again we continue with that some of the features can mislead the sucrose concen-

tration estimation idea. This time we apply Linear Discriminant Analysis (LDA) which

is used before on spectroscopy measurements in the study of Vı́tková et al. (2012). LDA

is differentiating from PCA by also preserving sample class information through forming

the new features. That is why we expect better results from it comparing the PCA results.

Just after the dataset division operation on sucrose solution dataset, test set sam-

ples are not included in LDA computation just like the 4.2.1.3 implementation.

For each minute samples in sucrose solution dataset, LDA is applied as explained

above and for 501 feature, 501 different eigenvalue and eigenvectors are calculated. These

eigenvalues are ordered by their value because bigger eigenvalue indicates a bigger effect

on the whole dataset. According to the sum of total eigenvalues, first 10 biggest eigenval-

ues give us over than 99.99% of variation in the dataset. Thus the eigenvectors of the first

10 biggest eigenvalues are used to convert the dataset from 501 features to 10 features.

4.2.2. Artificial Neural Network (ANN) Training Results

The different number of ANN structures are trained 100 times from scratch. The

number of total experiments for each ANN structure is determined to eliminate the chance

factor. For the determination of the error of the current trained ANN structure, mean

absolute error (MAE) and root mean square error (RMSE) of regression results of the test

set are used. Mean of 100 MAE and 100 RMSE from each training is used to evaluate

an ANN structure for a specific minute dataset. MAE is used to determine ANN error to

clearly indicate how trained ANN is predicting with fault. RMSE is used as an alternative
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to indicate large errors in test set to show the steadiness of MAE. Thanks to these two

error metrics, we are able to compare the reliability of training results. For each minute,

these dataset preparation and training operations are conducted separately. Their results

can be seen as MAE in Table 4.4 and RMSE in Table 4.5. Also the standard deviation of

100 MAE and 100 RMSE are calculated and shown in these tables. A mean of MAE of

4.14 refers to that the estimated concentration has an offset of 4.14% with respect to the

actual concentration (which is between 0% and 50%).

The duration of ANN regression experiments are measured in terms of seconds.

Minute 4 dataset experiments with two hidden layers which has 10 neurons in each layer

structure duration measurements can be seen in Table 4.6.

Performance graphs of minute 4 ANN training examples can be seen on Figures

4.4, 4.5, 4.6 and 4.7. In these performance graphs, we expect that validation and train

mean squared error (MSE) values are reduced faster then test MSE value in each epoch.

Regression graphs of minute 4 ANN training examples can be seen on Figures 4.8,

4.9, 4.10 and 4.11. In these regression graphs, we mostly focused on the determination of

test sample results since we evaluate the preprocessing methods and ANN hidden layer

structures according to mean of the test set mean absolute errors. In the graphs, we expect

that the line of crossing the samples fit exactly so the R value will be 1 in the perfect

case. As a general overview of the results, we see that from using entire feature set and

using peak values methods to applying PCA and LDA in order, the crossing line in the

test sample result graphs become closer and closer to 1 as line fitting value of R.

Table 4.4. The regression results of sucrose concentration dataset. MAE of 100 train-
ing with their ANN hidden layer structures are shown as mean / standard
deviation.

Entire
Feature Set

Hidden Layer
Structure Peak Values

Hidden Layer
Structure PCA

Hidden Layer
Structure LDA

Hidden Layer
Structure

Minute 4 8.28 / 1.35 5 - 10 14.70 / 0.22 10 - 10 6.00 / 0.39 10 - 10 5.14 / 0.32 5 - 5
Minute 5 7.63 / 1.73 15 14.44 / 0.20 10 - 10 6.21 / 0.41 10 - 10 4.82 / 0.33 5 - 10
Minute 6 8.53 / 1.38 5 14.53 / 0.20 10 - 10 4.67 / 0.29 10 - 10 5.13 / 0.31 5 - 5
Minute 7 9.62 / 1.44 10 15.47 / 0.16 10 - 10 5.47 / 0.37 10 - 10 5.54 / 0.40 5 - 5
Minute 8 8.82 / 0.81 10 15.06 / 0.08 10 - 10 6.59 / 0.46 10 - 10 4.31 / 0.28 5 - 5
Minute 9 8.85 / 2.07 15 14.79 / 0.13 10 - 10 4.38 / 0.28 10 - 10 4.14 / 0.26 5 - 5

Minute 10 9.07 / 1.41 15 14.35 / 0.18 10 - 10 5.07 / 0.32 10 - 10 5.19 / 0.36 5 - 5
Minute 11 8.04 / 1.31 10 - 10 14.84 / 0.22 10 - 10 5.69 / 0.33 10 - 10 5.05 / 0.31 5 - 5
Minute 12 8.81 / 1.30 10 14.63 / 0.01 10 - 10 5.15 / 0.30 10 - 10 6.09 / 0.43 5
Minute 13 7.98 / 1.70 10 14.47 / 0.22 10 - 10 4.89 / 0.31 10 - 10 7.18 / 0.62 5
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Table 4.5. The regression results of sucrose concentration dataset. RMSE of 100
training with their ANN hidden layer structures are shown as mean / stan-
dard deviation.

Entire
Feature Set

Hidden Layer
Structure Peak Values

Hidden Layer
Structure PCA

Hidden Layer
Structure LDA

Hidden Layer
Structure

Minute 4 10.36 / 1.59 5 - 10 16.79 / 0.21 10 - 10 7.77 / 0.54 10 - 10 6.50 / 0.42 5 - 5
Minute 5 9.50 / 1.99 15 16.60 / 0.20 10 - 10 7.93 / 0.60 10 - 10 6.15 / 0.42 5 - 10
Minute 6 10.51 / 1.52 5 16.65 / 0.24 10 - 10 5.80 / 0.34 10 - 10 6.46 / 0.39 5 - 5
Minute 7 11.77 / 1.57 10 17.46 / 0.15 10 - 10 6.95 / 0.42 10 - 10 6.96 / 0.50 5 - 5
Minute 8 10.88 / 0.86 10 17.05 / 0.06 10 - 10 8.17 / 0.55 10 - 10 5.46 / 0.33 5 - 5
Minute 9 10.76 / 2.38 15 16.81 / 0.11 10 - 10 5.49 / 0.34 10 - 10 5.24 / 0.31 5 - 5

Minute 10 11.15 / 1.53 15 16.43 / 0.21 10 - 10 6.42 / 0.36 10 - 10 6.52 / 0.43 5 - 5
Minute 11 10.11 / 1.54 10 - 10 16.84 / 0.20 10 - 10 7.25 / 0.40 10 - 10 6.31 / 0.36 5 - 5
Minute 12 11.06 / 1.46 10 17.13 / 0.01 10 - 10 6.48 / 0.41 10 - 10 7.70 / 0.53 5
Minute 13 10.07 / 2.17 10 17.03 / 0.20 10 - 10 6.25 / 0.58 10 - 10 9.02 / 0.77 5

Table 4.6. Total 100 ANN training duration and approximate duration of each ANN
training in terms of seconds of different preprocessing methods on Minute
4 dataset with two hidden layers structure while each layer has 10 neurons

Entire
Feature Set Peak Values PCA LDA

Total Duration of 100 Training 68.60 45.63 53.19 85.28
Approximate Duration of Each Training 0.68 0.45 0.53 0.85

Figure 4.4. Performance graph of a sucrose concentration regression experiment by
using entire feature set on minute 4 samples with ANN structure of a single
hidden layer with 5 neurons
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Figure 4.5. Performance graph of a sucrose concentration regression experiment by
using peak values on minute 4 samples with ANN structure of a single
hidden layer with 15 neurons

Figure 4.6. Performance graph of a sucrose concentration regression experiment by
applying PCA on minute 4 samples with ANN structure of double hidden
layers with 10 neurons in each layer
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Figure 4.7. Performance graph of a sucrose concentration regression experiment by
applying LDA on minute 4 samples with ANN structure of double hidden
layers with 10 neurons in each layer
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Figure 4.8. Regression results graph of a sucrose concentration regression experiment
by using entire feature set on minute 4 samples with ANN structure of a
single hidden layer with 5 neurons
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Figure 4.9. Regression results graph of a sucrose concentration regression experiment
by using peak values on minute 4 samples with ANN structure of a single
hidden layer with 15 neurons
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Figure 4.10. Regression results graph of a sucrose concentration regression experiment
by applying PCA on minute 4 samples with ANN structure of double hid-
den layers with 10 neurons in each layer
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Figure 4.11. Regression results graph of a sucrose concentration regression experiment
by applying LDA on minute 4 samples with ANN structure of double hid-
den layers with 10 neurons in each layer
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4.2.3. Support Vector Regression (SVR) Training Results

SVR with polynomial kernel is trained 100 times from scratch. The number of

total experiments is determined to eliminate the chance factor. For the determination of

the error of the trained SVR, mean absolute error (MAE) and root mean square error

(RMSE) of regression results of the test set are used. Mean of 100 MAE and 100 RMSE

from each training is used to evaluation of a specific minute dataset. Thanks to these two

error metrics, we are able to compare the reliability of training results. For each minute,

these dataset preparation and training operations are conducted separately. Their results

can be seen as MAE in Table 4.7 and RMSE in Table 4.8. Also the standard deviation of

100 MAE and 100 RMSE are calculated and shown in these tables. A mean error of 4.18

refers to that the estimated concentration has an offset of 4.18% with respect to the actual

concentration (which is between 0% and 50%).

The duration of SVR experiments are measured in terms of seconds. Minute 4

dataset experiments duration measurements can be seen in Table 4.9.

Regression graphs of minute 4 SVR training examples can be seen on Figures

4.12, 4.13, 4.14 and 4.15. In these SVR regression graphs, we mostly focused on the de-

termination of test sample results since we evaluate the preprocessing methods according

to mean of the test set mean absolute errors. In the graphs, we expect that the line of

crossing the samples fit exactly so the R value will be 1 in the perfect case. As a general

overview of the results, we see that from using entire feature set and using peak values

methods to applying PCA and LDA in order, the crossing line in the test sample result

graphs become closer and closer to 1 as line fitting value of R.

Table 4.7. The regression results of sucrose concentration dataset. MAE of 100 train-
ing with SVR are shown as mean / standard deviation.

Entire
Feature Set Peak Values PCA LDA

Minute 4 495.26 / 566.52 13.91 / 0.38 5.21 / 4.88 5.32 / 0.61
Minute 5 57.60 / 29.29 14.22 / 0.30 3.30 / 0.27 5.20 / 0.34
Minute 6 226.41 / 257.21 14.15 / 0.45 3.24 / 0.39 5.20 / 0.39
Minute 7 273.53 / 317.19 14.86 / 0.41 3.99 / 1.25 6.50 / 0.50
Minute 8 167.28 / 180.98 14.31 / 0.33 5.14 / 2.97 4.18 / 0.31
Minute 9 34.30 / 11.16 14.38 / 0.30 3.34 / 0.29 4.48 / 0.32

Minute 10 88.17 / 54.01 13.53 / 0.40 3.07 / 0.41 5.18 / 0.38
Minute 11 91.17 / 75.46 14.34 / 0.38 4.07 / 1.79 5.35 / 0.44
Minute 12 322.09 / 448.25 14.07 / 0.31 6.09 / 4.38 6.09 / 0.73
Minute 13 54.15 / 39.23 14.33 / 0.39 5.06 / 5.81 8.36 / 0.79
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Table 4.8. The regression results of sucrose concentration dataset. RMSE of 100
training with SVR are shown as mean / standard deviation.

Entire
Feature Set Peak Values PCA LDA

Minute 4 879.89 / 865.78 16.43 / 0.64 28.14 / 61.07 7.39 / 2.63
Minute 5 105.79 / 41.77 16.64 / 0.36 4.76 / 0.96 6.81 / 0.51
Minute 6 408.94 / 325.80 16.65 / 0.55 5.08 / 3.07 6.85 / 0.59
Minute 7 624.15 / 473.91 17.27 / 0.49 10.88 / 10.65 8.59 / 0.74
Minute 8 273.91 / 202.65 16.71 / 0.36 19.60 / 33.12 5.51 / 0.56
Minute 9 60.43 / 21.72 16.66 / 0.31 5.16 / 1.28 5.92 / 0.50

Minute 10 152.45 / 85.06 16.09 / 0.42 5.55 / 3.61 6.89 / 0.55
Minute 11 165.21 / 128.96 16.78 / 0.42 13.12 / 20.01 7.10 / 0.56
Minute 12 968.37 / 1140.77 16.70 / 0.35 27.74 / 37.04 8.74 / 2.03
Minute 13 96.61 / 70.74 16.96 / 0.44 17.01 / 47.82 11.50 / 1.31

Table 4.9. Total 100 SVR training duration and approximate duration of each SVR
training in terms of seconds of different preprocessing methods on Minute
4 dataset

Entire
Feature Set Peak Values PCA LDA

Total Duration of 100 Training 2174.70 3.56 697.69 134.24
Approximate Duration of Each Training 21.74 0.03 6.97 1.34
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Figure 4.12. Regression results graph of a sucrose concentration regression experiment
by using entire feature set on minute 4 samples with SVR
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Figure 4.13. Regression results graph of a sucrose concentration regression experiment
by using peak values on minute 4 samples with SVR

33



Figure 4.14. Regression results graph of a sucrose concentration regression experiment
by applying PCA on minute 4 samples with SVR
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Figure 4.15. Regression results graph of a sucrose concentration regression experiment
by applying LDA on minute 4 samples with SVR
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4.2.4. Discussion and Conclusion

After performing all experiments with ANNs and SVR on raw and preprocessed

sucrose concentration dataset, we obtain 100 MAE and 100 RMSE of each trained ANN

structure and SVR separately. Then we calculate their means and standard deviation in

order to evaluate results effectively.

The minimum number of error values of each minute with its ANN structure are

listed as MAE in Table 4.4 and RMSE in Table 4.5. When we look at the ANN regression

results, it is clear that we get the best results from LDA preprocessing method and PCA

implementation results are almost close to that. Although it is a frequently used approach

in the previous studies, using the peak values method give us the worst results among the

others. Even using the entire feature set method is better than using peak values method

but it is not sufficient as its approximate means of MAE changes between 9.50 mg/mL

and 11.77 mg/mL for ANN experiments.

Among the sucrose concentration experiments, we get the best ANN result as

MAE of 4.14 mg/mL and as RMSE of 5.24 mg/mL from LDA implementation of minute

9 samples on two hidden layers structure which has 5 neurons in each layer. 4.14 mg/mL

error corresponds to predicting a 30 mg/mL sucrose solution as 25.86 mg/mL or 34.14

mg/mL. We get the worst ANN result as MAE of 15.47 mg/mL and RMSE of 17.46

mg/mL from using peak values method of minute 7 samples on multiple hidden layers

structure which has 10 neurons in the first layer and 10 neurons in the second layer.

Among all different ANN hidden layer structures, two hidden layers structure

which has 10 neurons or 5 nuerons in each layer generally gives us the best results. We

also observe that the other hidden layer structure results are very close to each other in

terms of the mean of MAE and RMSE. Also we get the best and worst results from the

same number of hidden layer structures which is two hidden layers structure. That is why

we can not say there is a direct benefit from the hidden layer structure complexity to get

better results. The main effect is supported by preprocessing steps by especially PCA and

LDA. We get the best results of LDA and PCA implementation from minute 9 samples.

But for the other preprocessing methods, it could not accomplished by minute 9 samples.

That is why, we can not say that some minute samples are superior to others by giving

the extra information about the sucrose concentration. In addition, it is clear that each

preprocessing method with ANN training give us reliable test results by looking at their

standard deviation values. Because generally, they are changing between 0.01 and 2.07
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for MAE, 0.01 and 2.38 for RMSE.

The means of 100 MAE values of each minute with SVR are listed as MAE in

Table 4.7 and RMSE in Table 4.8. When we look at the SVR regression results, we get

the best results from PCA and LDA preprocessing methods. For some minutes PCA is

better than LDA for others LDA is better than PCA. These two preprocessing methods

results are very close to each other. Just like the ANN results, using the peak values

method give us the almost the same results. But this time using the entire feature set

method is resulted with unreliably worst results.

Among the sucrose concentration SVR experiments, we get the best result as MAE

of 3.07 mg/mL with 0.41 standard deviation from PCA implementation of minute 10

samples. 3.07 mg/mL error corresponds to predicting a 30 mg/mL sucrose solution as

26.93 mg/mL or 33.07 mg/mL. As contrast we get the best result as RMSE of 4.76 mg/mL

with 0.96 standard deviation from PCA implementation of minute 5 samples. We get

the worst SVR result as MAE of 495.26 mg/mL from using entire feature set method

of minute 4 samples and as RMSE 968.37 mg/mL from using entire feature set method

of minute 12 samples. Also by looking at the standard deviation values of using entire

feature set preprocessing method, it is obvious that they are not reliable.

From the perspective of training duration, ANN handles the entire feature set faster

than SVR thanks to the GPU computation power. But also ANN has a shorter duration

for PCA and LDA implementations. But when it comes to the peak value preprocessing

method, SVR trains in much less time.

Sucrose experiments results of ANN and SVR results are shown a significant sim-

ilarity with each other.
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CHAPTER 5

ESTIMATION OF BACTERIA CONCENTRATION

5.1. Bacteria Concentration Dataset

Thanks to IZTECH Department of Bioengineering, different bacteria concentra-

tions with ultrapure water is prepared in well plate cells. Concentrations of bacteria so-

lutions by size is determined as 102, 103, 104, 105, 106, 107 cells per unit(cpu). After

that, each well plate cell is measured by Ultraviolet-Visible(UV-Vis) spectroscopy with

the help of golden nanoparticles. The golden nanoparticles are grown for several minutes

and used for increasing the adhesion of bacteria colonies in order to increase sensitivity

to small variations in the refractive index. Also the same number of well plate cells are

prepared without bacteria solutions and spectrum measurements performed on them too.

The selected wavelengths are between 400 nm and 800 nm with a precision of

1 nm. This means for each prepared bacteria concentration in a well plate cell, we get

401 different measurements. All these measurements are performed at different times as

minute 0, minute 4, minute 10, minute 12. These times are the durations of gold growth in

solution. The selected wavelengths and measurement times are determined by IZTECH

Department of Bioengineering to determine which is, within these spectra and at these

specific times, the most distinguishing and informative spectrum. We investigate this in

this thesis by machine learning methods.

After all the experiment setups and measurements, we have a bacteria solution

dataset whom samples are labeled as with bacteria for 102, 103, 104, 105, 106, 107 cpu

concentrations and without bacteria for without bacteria solution measurements. More-

over, in the same dataset, we labeled 102, 103, 104 cpu concentrations as low bacteria con-

centrations and 105, 106, 107 cpu concentrations as high bacteria concentrations. Number

of samples is given Table 5.1. Each sample contains 401 measurements corresponding

to 401 features. To examine the bacteria concentration dataset, spectroscopy measure-

ment values at each wavelength are drawn with different colors for each different bacteria

concentration on Figures 5.1, 5.2, 5.3 and 5.4.
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As seen in Figures 5.1 and 5.2, determining the low bacteria concentration and

high bacteria concentration by the specific minute of spectroscopy measurements is not

possible by the naked eye because of all lines overlapping with each other. It can be seen

that low bacteria concentration lines are messier and high bacteria concentration lines are

more organized. It is clear that for all minutes nearly after 550 nm wavelength, spectrum

measurement values started to spread. Just like the 4.1, the measurements at specific

wavelengths can be more informative to distinguish the bacteria concentration.

As seen in Figure 5.3 and 5.4, determining the with and without bacteria concen-

tration in solutions by the specific minute of spectroscopy measurements is not possible

by the naked eye because of the lines overlapping with each other. Even this time it is

messier than low and high bacteria concentration measurements. It is clear that for all

minutes nearly after 550 nm wavelength, spectrum measurement values started to spread.

This means measurements at specific wavelengths can be more informative to distinguish

with and without bacteria concentration again.

In the graphs, we tried to explain the classification of bacteria concentration in

solutions. But this time with the knowledge of sucrose concentration regression results,

previous works approaches are not helped us as much as we expected. Thus we tried to

solve this problem directly by building a system to get the most informative and distin-

guishing values from these features which can be done by feature extractions techniques.

Table 5.1. Number of samples in the bacteria concentration dataset

Minute 0 Minute 4 Minute 10 Minute 12
With 102 cpu Bacteria 21 17 21 19
With 103 cpu Bacteria 23 20 21 21
With 104 cpu Bacteria 22 20 21 20
With 105 cpu Bacteria 23 14 14 17
With 106 cpu Bacteria 18 20 18 19
With 107 cpu Bacteria 38 38 37 30

Low Bacteria Concentration 66 57 63 60
High Bacteria Concentration 79 72 69 66

With Bacteria 145 129 132 126
Without Bacteria 144 129 132 126
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Figure 5.1. Low Bacteria Concentration (102, 103, 104) and High Bacteria Concentra-
tion (105, 106, 107) Measurements at Minute 4

Figure 5.2. Low Bacteria Concentration (102, 103, 104) and High Bacteria Concentra-
tion (105, 106, 107) Measurements at Minute 12
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Figure 5.3. With and Without Bacteria Solution Measurements at Minute 4

Figure 5.4. With and Without Bacteria Solution Measurements at Minute 12
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5.2. Bacteria Concentration Experiments

To deal with the bacteria concentration classification problem, we treat separately

each minute samples as minute 0, minute 4, minute 10 and minute 12. Just like in Sec-

tion 4.2, we want to use feedforward shallow Artificial Neural Network (ANN) with the

help of MATLAB Deep Learning Toolbox. For ANN activation function in each neuron,

hyperbolic tangent(tanh) transfer function is used. For ANN training function, scaled con-

jugate gradient backpropagation option is selected which updates weight and bias values

according to the scaled conjugate gradient method. But in order to deal with this clas-

sification problem, for ANN performance function, cross entropy performance function

is used which heavily penalizes extremely inaccurate outputs and lightly penalizes fairly

correct outputs. Again in each ANN structure, input values of input neurons and output

values of output neuron values are normalized with mapminmax option which normal-

izes the minimum and maximum values between -1 and 1 accordingly. Also in order to

compare the results wit different machine learning technique, Support Vector Machine on

MATLAB environment with MATLAB Statistics and Machine Learning Toolbox is used.

As a kernel function linear kernel is selected by trial and error. In addition, input values

are scaled by the corresponding weighted column mean and standard deviation by passing

”Standardize” parameter to the related training function.

In the bacteria solution dataset, we have 401 different features. With the help of

different preprocessing methods like PCA and LDA, the feature set size is changed. But

it is mentioned in 5.2.1, the bacteria solution dataset is not suitable for direct LDA im-

plementation due to the low number of samples. That is why, different approaches are

applied in 5.2.1.2 and 5.2.1.3. The number of inputs in the ANN structures are changed

accordingly. But the number of output neurons for each ANN structure remains the same

since the number of classes for classification is the same for low and high bacteria con-

centration classification problem, with and without bacteria classification problem. Thus

two neurons are used in the output layer of each ANN structure. For the hidden layer, we

want to try a different number of hidden layers and neurons to observe the hidden layer

structure effect on classification success. These hidden layer types are remained same just

like in the Tables 4.2 and 4.3.

Before starting the training of each different structure of ANNs, the separate

minute measurements of the dataset are divided into 3 parts as 60% for the training set,

20% for the validation set and 20% for the test set. Also the separate minute measure-
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ments of the dataset are divided into 2 parts as 80% for the training set, 20% for the test

set during the SVM experiments because SVM training does not consistent of multiple

different structures. During this division, the samples are shuffled by supporting that each

dataset group had an almost equal ratio of different samples as low/high bacteria con-

centration and with/without bacteria solution. In some cases, this rule is slightly broken

because the total number of bacteria solution samples are changing for each minute can

be seen in Table 5.1. This dataset division operation is conducted at the beginning of each

machine learning training.

5.2.1. Dataset Preprocessing

For the bacteria solution dataset, we try to obtain the most informative and distin-

guishing values from the bacteria solution feature set with the same approaches. But

this time we deal with classification problem as low/high bacteria concentration and

with/without bacteria solution in the bacteria solution dataset. Thus we apply these tech-

niques for two different classification problem separately. Also, we apply the same clas-

sification algorithm on these preprocessed datasets to compare the effectiveness of these

methods on the spectroscopy datasets.

5.2.1.1. Applying Principal Component Analysis

Same as in 4.2.1.3, we want to use PCA to extract the most informative and dis-

tinguishing information from bacteria solution dataset by applying to low/high bacteria

concentration and with/without bacteria solution samples separately. Thus for 401 fea-

tures of each bacteria sub-dataset, we apply a feature extraction technique as PCA.

The dataset division operation is applied of each bacteria sub-dataset for each

minute samples as 3 parts as 60% for the training set, 20% for the validation set and

20% for the test set during the ANN experiments. Also the dataset division operation is

applied of each bacteria sub-dataset for each minute samples as 2 parts as 80% for the

training set, 20% for the test set during the SVM experiments because SVM training does

not consistent of multiple different structures. Also, LDAP is performed on training and

validation set only because again we do not want our machine learning system to receive
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any preliminary information from test samples.

For each minute samples in the bacteria solution dataset, PCA is applied and for

401 feature, 401 different eigenvalue and eigenvectors are calculated. These eigenvalues

are ordered by their value because bigger eigenvalue indicates a bigger effect on the whole

dataset. According to the sum of total eigenvalues, first 10 biggest eigenvalues give us

over than 99.99% of variation in the dataset. Thus the eigenvectors of the first 10 biggest

eigenvalues are used to convert the dataset from 401 features to 10 features.

5.2.1.2. Applying Linear Discriminant Analysis with Pseudo Inverse

Same as in 4.2.1.4, we apply LDA to classify low/high bacteria concentration and

with/without bacteria solution. But we face with a problem when calculating Sb (between

classes scatter matrix) and Sw (within classes scatter matrix), Sw become singular ma-

trix because of the curse of dimensionality problem which causes an insufficient number

of samples compared to the number of features. Most of the face recognition datasets

also suffer from the same problem just like in the studies of Rui Huang et al. (2002),

Sahoolizadeh and Aliyari Ghassabeh (2008) and Zhao et al. (2011). As required by the

formula it becomes impossible to take the inverse of Sw matrix. In order to solve this

problem, instead of calculating the inverse of the Sw matrix, we calculated pseudo-inverse

which can be applied only for singular matrices. Thus our LDA application becomes Lin-

ear Discriminant Analysis with pseudo-inverse (LDAP) which is previously used by Liu

et al. (2007) and Gorecki and Luczak (2013).

The dataset division operation is applied of each bacteria sub-dataset for each

minute samples as 3 parts as 60% for the training set, 20% for the validation set and

20% for the test set during the ANN experiments. Also the dataset division operation is

applied of each bacteria sub-dataset for each minute samples as 2 parts as 80% for the

training set, 20% for the test set during the SVM experiments because SVM training does

not consistent of multiple different structures. Also, LDAP is performed on training and

validation set only because again we do not want our machine learning system to receive

any preliminary information from test samples.

For each minute samples in bacteria sub-datasets, LDAP is applied as explained

above and for 401 feature, 401 different eigenvalue and eigenvectors are calculated. These

eigenvalues are ordered by their value because bigger eigenvalue indicates a bigger effect
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on the whole dataset. According to the sum of total eigenvalues, first 10 biggest eigenval-

ues give us over than 99.99% of variation in the dataset. Thus the eigenvectors of the first

10 biggest eigenvalues are used to convert the dataset from 401 features to 10 features.

5.2.1.3. Applying First PCA Then LDA

We want to extract the most informative and distinguishing information from the

bacteria solution sub-datasets, As in the previous studies of Zhao et al. (2011) and Sa-

hoolizadeh and Aliyari Ghassabeh (2008), the approach consists of first applying PCA

since direct LDA implementation suffers from the curse of dimensionality problem. Af-

ter the dataset number of features are diminished enough to overcome the problem, LDA

implementation is performed on the PCA applied sub-datasets as low/high bacteria con-

centration and with/without bacteria solution. Thus 401 features of the sub-datasets, first

are reduced to 90 which is determined by the total common number of samples of low

and high bacteria concentrations, with and without bacteria solutions. Then LDA is im-

plemented to form the new dataset into 10 features.

The dataset division operation is applied of each bacteria sub-dataset for each

minute samples as 3 parts as 60% for the training set, 20% for the validation set and

20% for the test set during the ANN experiments. Also the dataset division operation is

applied of each bacteria sub-dataset for each minute samples as 2 parts as 80% for the

training set, 20% for the test set during the SVM experiments because SVM training does

not consistent of multiple different structures. Also, LDAP is performed on training and

validation set only because again we do not want our machine learning system to receive

any preliminary information from test samples.

For each minute samples in bacteria sub-datasets, first PCA then LDA method is

applied as explained above. For 401 features, 401 different eigenvalue and eigenvectors

are calculated by PCA application. Then these eigenvalues are ordered by their value

because bigger eigenvalue indicates a bigger effect on the whole dataset. According to

the sum of total eigenvalues, first 10 biggest eigenvalues give us over than 99.99% of

variation in the dataset. But in order to apply LDA, the first 90 biggest eigenvalues are

used to convert the dataset from 401 features to 90 features. After that LDA is applied

just like in Section 4.2.1.4. But this time instead of calculating 401 eigenvectors and

401 eigenvalues, we deal with 90 eigenvectors and 90 eigenvalues. By using the first 10
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biggest eigenvalues, 90 features are formed into 10 feature in the new dataset.

5.2.2. Artificial Neural Network (ANN) Training Results

For each bacteria sub-dataset, the different number of ANN structures trained 100

times from scratch. The number of total experiments for each ANN structure is deter-

mined to eliminate the chance factor. For the determination of the error of the current

trained ANN structure, the percentage of the number of misclassifications of test samples

are used. Mean of 100 test set misclassification from each training is used to evaluate one

ANN structure for a specific minute samples. Also the standard deviation of 100 traning

is calculated to show the variation of experiment results.

For each minute, these dataset preparation and training operations are conducted

separately. We obtain means of 100 error percentages of the test set of each trained ANN

structure. The mean of test error percentages of each minute with its ANN structure are

listed in Table 5.2 as with and without bacteria solution experiment results and in Table

5.3 low and high bacteria concentration experiment results.

The duration of ANN experiments are measured in terms of seconds. Minute 4

dataset experiments with two hidden layers structure which has 10 neurons in each layer

duration measurements can be seen in Table 5.4.

Performance graphs of minute 4 ANN training examples of with and without bac-

teria solution classification can be seen on Figures 5.5, 5.6 and 5.7. Also, performance

graphs of minute 4 ANN training examples of low and high bacteria concentration classi-

fication can be seen on Figures 5.8, 5.9 and 5.10. In these performance graphs, we expect

that validation and train cross entropy error values are reduced faster then test cross en-

tropy error value in each epoch.

Confusion graphs of minute 4 ANN training examples of with and without bac-

teria solution classification can be seen on Figures 5.11, 5.12 and 5.13. Also confusion

graphs of minute 4 ANN training examples of low and high bacteria concentration classi-

fication can be seen on Figures 5.14. In these confusion graphs, we mostly focused on the

prediction percentage of test sample results since we evaluate the preprocessing methods

and ANN hidden layer structures according to error percentage of test set. In the graphs,

we expect that misclassified number of samples should be zero in the perfect case. As a

general overview of the results, we see that as applying PCA, LDAP and first PCA then
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LDA methods in order, we get fewer and fewer misclassified number of test samples.

Table 5.2. The with and without bacteria solution classification results are shown as
mean / standard deviation of test set error percentage of 100 training with
their ANN hidden layer structures.

PCA
Hidden Layer

Structure LDAP
Hidden Layer

Structure
First PCA
Then LDA

Hidden Layer
Structure

Minute 0 12.05 / 3.73 10 4.22 / 2.96 10 1.66 / 1.58 10 - 10
Minute 4 26.74 / 6.61 15 2.70 / 2.31 5 - 5 0.22 / 0.62 10 - 10

Minute 10 21.36 / 5.54 5 15.94 / 4.20 15 14.94 / 4.05 5
Minute 12 14.58 / 5.27 15 2.26 / 2.30 10 0.18 / 0.64 5

Table 5.3. The low and high bacteria concentration classification results are shown as
mean / standard deviation of test set error percentage of 100 training with
their ANN hidden layer structures.

PCA
Hidden Layer

Structure LDAP
Hidden Layer

Structure
First PCA
Then LDA

Hidden Layer
Structure

Minute 0 0,58 / 1.39 15 0.48 / 1.20 10 0 / 0 10 and 15 and 10 - 10
Minute 4 0.20 / 1.04 15 0 / 0 10 and 10 - 10 0 / 0 10 and 15 and 10 - 10

Minute 10 1.60 / 2.34 15 0.16 / 0.78 10 0 / 0 10 and 15
Minute 12 1.32 / 2.34 10 - 10 0.64 / 1.47 15 0 / 0 10 and 15

Table 5.4. Total 100 ANN training duration and approximate duration of each ANN
training in terms of seconds of different preprocessing methods on Minute
4 dataset with two hidden layers structure while each layer has 10 neurons

PCA LDAP
First PCA
Then LDA

Total Duration of 100 Training of With/Without Bacteria Dataset 37.69 52.68 38.01
Approximate Duration of Each Training of With/Without Bacteria Dataset 0.37 0.52 0.38

Total Duration of 100 Training of Low/High Bacteria Dataset 40.14 40.82 35.16
Approximate Duration of Each Training of Low/High Bacteria Dataset 0.40 0.40 0.35
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Figure 5.5. Performance graph of a with and without bacteria solution classification
experiment by applying PCA on minute 4 samples with ANN structure of
a single hidden layer with 5 neurons

Figure 5.6. Performance graph of a with and without bacteria solution classification
experiment by applying LDAP on minute 4 samples with ANN structure
of double hidden layers with 10 neurons in each layer
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Figure 5.7. Performance graph of a with and without bacteria solution classification
experiment by applying first PCA then LDA on minute 4 samples with
ANN structure of double hidden layers with 10 neurons

Figure 5.8. Performance graph of a low and high bacteria concentration classification
experiment by applying PCA on minute 4 samples with ANN structure of
double hidden layers with 10 neurons in each layer
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Figure 5.9. Performance graph of a low and high bacteria concentration classification
experiment by applying LDAP on minute 4 samples with ANN structure
of a single hidden layer with 5 neurons

Figure 5.10. Performance graph of a low and high bacteria concentration classification
experiment by applying first PCA then LDA on minute 4 samples with
ANN structure of a single hidden layer with 5 neurons
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Figure 5.11. Confusion graph of a with and without bacteria solution classification ex-
periment by applying PCA on minute 4 samples with ANN structure of a
single hidden layer with 5 neurons
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Figure 5.12. Confusion graph of a with and without bacteria solution classification ex-
periment by applying LDAP on minute 4 samples with ANN structure of a
single hidden layer with 5 neurons
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Figure 5.13. Confusion graph of a with and without bacteria solution classification ex-
periment by applying first PCA then LDA on minute 4 samples with ANN
structure of a single hidden layer with 5 neurons
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Figure 5.14. Confusion graph of a low and high bacteria concentration classification
experiment on minute 4 samples with ANN structure of a single hidden
layer with 5 neurons. Perfect result is obtained with PCA, LDAP and first
PCA then LDA approaches.
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5.2.3. Support Vector Machine (SVM) Training Results

For each bacteria sub-dataset, SVM trained 100 times from scratch. The number

of total experiments is determined to eliminate the chance factor. For the determination of

the error of the SVM, the percentage of the number of misclassifications of test samples

are used. Mean of 100 test set misclassification from each training is used to evaluate

SVM results for a specific minute samples.

For each minute, these dataset preparation and training operations are conducted

separately. We obtain means of 100 error percentages from the test set of trained SVM.

The mean of test error percentages of each minute are listed in Table 5.5 as with and

without bacteria solution experiment results and in Table 5.6 low and high bacteria con-

centration experiment results.

The duration of SVM experiments are measured in terms of seconds. Minute 4

dataset experiments duration measurements can be seen in Table 5.7.

Confusion graphs of minute 4 SVM training examples of with and without bac-

teria solution classification can be seen on Figures 5.15, 5.16 and 5.17. Also confusion

graphs of minute 4 SVM training examples of low and high bacteria concentration classi-

fication can be seen on Figures 5.18. In these confusion graphs, we mostly focused on the

prediction percentage of test sample results since we evaluate the preprocessing methods

and trained SVM error percentage of test set. In the graphs, we expect that misclassified

number of samples should be zero in the perfect case. As a general overview of the re-

sults, we see that as applying PCA, LDAP and first PCA then LDA methods in order, we

get fewer and fewer misclassified number of test samples just like the ANN experiments

results.

Table 5.5. The with and without bacteria solution classification results are shown as
mean / standard deviation of test set error percentage of 100 training with
SVM.

PCA LDAP First PCA Then LDA
Minute 0 14.54 / 4.87 4.64 / 2.53 1.70 / 1.64
Minute 4 26.10 / 5.95 2.26 / 2.32 0.10 / 0.43

Minute 10 23 / 6.32 15.67 / 4.30 15.23 / 3.88
Minute 12 11.86 / 4.53 2.70 / 2.22 0.24 / 0.65
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Table 5.6. The low and high bacteria concentration classification results are shown as
mean / standard deviation of test set error percentage of 100 training with
SVM.

PCA LDAP First PCA Then LDA
Minute 0 0.75 / 1.99 0.34 / 1.03 0 / 0
Minute 4 0.32 / 1.09 0.08 / 0.8 0 / 0

Minute 10 1.4 / 2.07 0.12 / 0.68 0 / 0
Minute 12 1.68 / 2.28 0.64 / 1.47 0 / 0

Table 5.7. Total 100 SVM training duration and approximate duration of each SVM
training in terms of seconds of different preprocessing methods on Minute
4 dataset

PCA LDAP
First PCA
Then LDA

Total Duration of 100 Training of With/Without Bacteria Dataset 4.45 11.53 5.07
Approximate Duration of Each Training of With/Without Bacteria Dataset 0.04 0.11 0.05

Total Duration of 100 Training of Low/High Bacteria Dataset 3.37 8.85 3.53
Approximate Duration of Each Training of Low/High Bacteria Dataset 0.03 0.08 0.03
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Figure 5.15. Confusion graph of a with and without bacteria solution classification ex-
periment by applying PCA on minute 4 samples with SVM
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Figure 5.16. Confusion graph of a with and without bacteria solution classification ex-
periment by applying LDAP on minute 4 samples with SVM
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Figure 5.17. Confusion graph of a with and without bacteria solution classification ex-
periment by applying first PCA then LDA on minute 4 samples with SVM
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Figure 5.18. Confusion graph of a low and high bacteria concentration classification
experiment on minute 4 samples with SVM. Perfect result is obtained with
PCA, LDAP and first PCA then LDA approaches.

60



5.2.4. Discussion and Conclusion

After performing all ANN and SVM experiments with preprocessed with and

without bacteria solution dataset results evaluation is given in 5.2.4.1 and low and high

bacteria concentration sub-dataset results evaluation is given in 5.2.4.2.

5.2.4.1. With and Without Bacteria Solution Experiment Results

When we look at the results for ANN experiments, it is clear that we get the best

results from first PCA then LDA implementation preprocessing method as 0.18% classi-

fication error with 0.64 standard deviation. The LDAP method gives us the second best

results which we can say still acceptable as 2.26% classification error with 2.30 standard

deviation. But the PCA implementation results are the worst among all preprocessing

methods as its error percentages are changing between 12.05% and 26.74%.

Within all results, it is clear that minute 10 samples always give the worst un-

acceptable results without regarding the preprocessing methods. For PCA its error is

21.36%, for LDAP it is 15.94% and for first PCA then LDA implementation it is 14.94%.

For that reason, it indicates us there is a problem about the minute 10 samples. Also in all

preprocessing methods of minute 10 samples, the standard deviation is always high.

Among the with and without bacteria solution ANN experiments, we get the best

result as 0.18% from first PCA then LDA implementation of minute 12 samples on single

hidden layer structure which has 5 neurons the layer. 0.18% corresponds to predicting

with or without bacteria solution with 0.18% classification error. We get the worst ANN

result as 26.74% from PCA implementation method of minute 4 samples on a single

hidden layer structure which has 15 neurons in the layer.

Among all different hidden layer structures, single hidden layer structure with 5

neurons give us the best result in the first PCA then LDA implementation. But also the

same method implementation with two hidden layers structure which has 10 neurons in

each layer generally gives us close results. Also for PCA implementation and LDAP

implementation, we get the best results from a single hidden layer with 10 neurons struc-

ture. That is why we can not say there is a direct benefit from hidden layer structure

complexity to get better results. The main effect is supported from preprocessing steps

by especially first PCA then LDA implementation. Also, we can say that as the minutes
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pass to grow golden nanoparticles for increasing the adhesion of bacteria, we get better

and better results for with and without bacteria solution classification because for PCA

implementation minute 0 and minute 12 give the best results, for LDAP it is minute 4 and

minute 12, for first PCA then LDA implementation it is again minute 4 and minute 12.

Thus throughout the experiments, minute 12 samples give the best results.

When we look at the SVM results, it is clear that we get the best results again from

first PCA then LDA implementation preprocessing method as 0.10% classification error

with 0.43 standard deviation. The LDAP method gives us the second best results which we

can say still acceptable as 2.26% classification error with 2.32 standard deviation just like

the ANN experiments results. But as we expected, the PCA implementation results are

the worst among all preprocessing methods as its error percentages are changing between

11.86% and 26.10%.

Again it is clear that minute 10 samples always give the worst unacceptable results

without regarding the preprocessing methods. For PCA its error is 23.00%, for LDAP it

is 15.67% and for first PCA then LDA implementation it is 15.23%. For that reason with

the support of the ANN experiments results, it indicates us there is a problem about the

minute 10 samples.

Among the with and without bacteria solution SVM experiments, we get the best

result as 0.10% from first PCA then LDA implementation of minute 4 samples. 0.10%

corresponds to predicting with or without bacteria solution with 0.10% classification error.

We get the worst ANN result as 26.10% from PCA implementation method of minute 4

samples.

Again, we can say that as the minutes pass to grow golden nanoparticles for in-

creasing the adhesion of bacteria, we get better and better results for with and without

bacteria solution classification because for PCA implementation minute 0 and minute 12

give the best results, for LDAP it is minute 4 and minute 12, for first PCA then LDA

implementation it is again minute 4 and minute 12. Throughout the experiments, minute

4 and minute 12 samples give the best results.

5.2.4.2. Low and High Bacteria Concentration Experiment Results

When we look at the results for ANN experiments, we obtain means of 100 test

error percentages of each trained ANN structure. The minimum test error percentage of
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each minute with its ANN structure are listed in Table 5.3. When we look at the results

as a whole, this time all preprocessing methods give us acceptable and successful results.

But especially first PCA then LDA implementation gives us error-free classification for all

minutes. Also, we see that LDAP implementation of minute 4 gives us an error-free result.

The standard deviation of 100 training support the reliability of the error free results.

Among the low and high bacteria concentration ANN experiments, we get the

best ANN result as 0% from first PCA then LDA implementation of all minute samples

on single hidden layer structure with 10 neurons, single hidden layer structure with 15

neurons and two hidden layers structure with 10 neurons in each layer. Which means we

can predict the low or high bacteria concentrations as error-free. Also, we get the worst

ANN result as 1.60% from PCA implementation method of minute 10 samples on a single

hidden layer structure which has 15 neurons in the layer. Which is still acceptable and

close to the other results for low and high bacteria concentration prediction.

Among all different hidden layer structures, two hidden layers structure with 10

neurons in each layer, single hidden layer structure with 10 neurons and single hidden

layer structure with 15 neurons give us better results. That is why we can not say there is

a direct benefit from hidden layer structure complexity to get better results. Main effect is

supported by preprocessing steps by especially first PCA then LDA implementation. We

also observe that at the results from the minute perspective as the minutes pass to grow

golden nanoparticles for increasing the adhesion of bacteria, we get better and better re-

sults for the low and high bacteria concentration classification. For PCA implementation

minute 4 give the best results, for LDAP it is minute 4, for first PCA then LDA imple-

mentation it is all minutes. Thus throughout the experiments, minute 4 samples give the

best results. But we cannot say it is superior to other minutes since all error percentages

are almost close to the zero.

From the perspective of training duration, because of the small size of feature sets,

ANN training duration is slower than SVM. It shows us how SVM can handle simple

solutions much faster which can be seen in Table 5.4 and Table 5.7 for the comparison.

For SVM experiments, we obtain means of 100 test error percentages of trained

SVM. The mean test error percentage of each minute are listed in Table 5.6. Again all

preprocessing methods give us acceptable and successful results. But especially first PCA

then LDA implementation gives us error-free classification for all minutes just like the

ANN experiments results.

Among the low and high bacteria concentration SVM experiments, we get the
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best result as 0% from first PCA then LDA implementation of all minute samples. Which

means we can predict the low or high bacteria concentrations as error-free. Also, we get

the worst SVM result as 1.68% from PCA implementation method of minute 12 sam-

ples. Which is still acceptable and close to the other results for low and high bacteria

concentration prediction.

We also observe that for PCA implementation minute 4 give the best results, for

LDAP it is minute 4, for first PCA then LDA implementation it is all minutes. Thus

throughout the experiments, minute 4 samples give the best results. But we cannot say

it is superior to other minutes since all error percentages are almost close to the zero for

LDAP and first PCA then LDA implementations.

From the perspective of training duration, because of the small size of feature sets,

ANN training duration is slower than SVM. It shows us how SVM can handle simple

solutions much faster which can be seen in Table 5.4 and Table 5.7 for the comparison.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

In this thesis, we try to make estimations for sucrose concentrations on the su-

crose concentration dataset which is obtained by localized surface plasmon resonance of

immobilized golden nanoparticles with spectroscopy methodology. Also we try to make

classifications for bacteria concentrations on the bacteria solution dataset which is ob-

tained by spectroscopy measurements with the help of golden particles that are used for

increasing the surface areas of bacteria colonies in order to increase the interaction be-

tween bacteria and electromagnetic radiation. The bacteria classification is conducted

for with/without bacteria solution and low/high bacteria concentration separately. This

research is a pioneer to use golden nanoparticles for sucrose concentration and bacteria

concentration in solutions. Also, these obtained datasets are used as the first time in any

machine learning methodologies.

As a result of the sucrose concentration experiments, with low mean absolute

errors and root mean square errors, it is possible to predict the sucrose concentration in

a pure water solution. It is the first step of the development of an optical biosensor. But

still, it can not be suitable to use in scientific or medical purposes since it is not close

to the perfect estimation. We believe that the minimum MAE as 3.07 mg/mL can be

improved by an enriched dataset. Because in the current sucrose concentration dataset,

we have sample labels as 0 mg/mL, 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL and 50

mg/mL which can be problematic for predicting continuous concentration values such as

0.1 mg/mL, 15.95 mg/mL etc. Also, we tested all common preprocessing approaches as

using peak values, applying PCA and applying LDA, in addition, using the entire feature

set. We see that how to deal with spectroscopy measurements in order to make proper

predictions. Especially PCA and LDA implementations give the best results. Because

of the supervised approach of LDA, we get slightly better results compared to PCA in

ANN experiments. But for SVR experiments we get close error values for PCA and LDA
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implementations. According to our evaluation, LDA preprocessing method is preferred

for sucrose concentration estimation because it is observed that RMSE values are low

and standard deviations of MAE and RMSE are small. Moreover, using peak values in

the spectroscopy measurements is not reliable since we are dealing with 501 different

wavelength measurement, environmental noise, and human error. So it is now a good

idea to eliminate features manually for spectroscopy datasets. We also experience that for

the sucrose spectroscopy datasets during ANN experiments, it is not beneficial to increase

the complexity of hidden layer structure as we get MAEs and RMSEs of from different

hidden layer structures are very close to each other. But it is a good thing to try different

structures of hidden layers for the ANN training.

As a result of the bacteria solution experiments, it is possible to predict the with/wi-

thout bacteria solution with an error percentage near the error-free and low/high bacteria

concentration with completely error free. Thus it is an almost excellent outcome for the

bacteria dataset since for the with/without bacteria sub-dataset, experiment results for the

minute 10 abnormally bad for both ANN and SVM experiments. That is why we think

there should be some mistakes through the minute 10 sample measurements. But even if

minute 10 results are not reasoned from the faulty measurements, still it is an outstanding

result for the bacteria classifications. Again it is the first step of the development of an

optical biosensor. With the outcome of the experiments, it may be used in scientific or

medical purposes. We try to test all common preprocessing approaches as applying PCA

and applying LDA excluding using peak values and using entire feature set methods since

we already tested them on sucrose concentrations. But for the LDA implementation, we

face the curse of dimensionality problem which happens when the number of dataset sam-

ples is lower than the sum of the number of features and the number of classes. Because

compared to the sucrose concentration dataset, the number of samples for each class is

fewer in bacteria solution dataset. This problem is very common among face recogni-

tion datasets. That is why we used different approaches as LDA with pseudo-inverse

function and first PCA then LDA method in order to beat the curse of dimensionality

problem. Especially first PCA then LDA implementations give the best results. As we

expected thanks to the supervised approach of LDA, we get the best results from LDAP

and first PCA then LDA implementation compared to PCA. For with/without bacteria

classification PCA give us unacceptable results as between 12.05% and 26.74% for ANN

experiments, between 11.86% and 26.10% in SVM experiments. But for the low/high

bacteria concentration classifications, all preprocessing approaches and both ANN and
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SVM trainings give us error rates close to zero. For ANN experiments, we experience

that it is not beneficial to increase the complexity of hidden layer structure as we get

test error percentages from different hidden layer structures that are very close to each

other. But again it is a good thing to try different structures of hidden layers for the ANN

training.

6.2. Future Work

Using golden nanoparticles to help spectroscopy measurement is first time used

on sucrose and bacteria solutions. This method can be also used on different chemical or

biological solutions in order to determine the concentration.

For the sucrose concentration experiments, it is still needed an enriched dataset

which will help to build a system for perfect prediction since current sample labels are

more likely to be used in classification instead of regression. We hope that a more com-

prehensive dataset in terms of concentration samples will improve the results of the esti-

mation of sucrose concentration.

We accomplished error-free detection of with/without bacteria solution and low/

high bacteria concentration with laboratory measurements. According to these results, a

proper functional sensor can be built to determine the with/without bacteria solution and

low/high bacteria concentration. Moreover, it can be used in real-world problems such as

milk spoilage, water pollution, diseased blood, etc.
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APPENDIX A

SPECTROSCOPY MEASUREMENTS

Figure A.1. Sucrose Concentrations Measurements at Minute 4 Graph

Figure A.2. Sucrose Concentrations Measurements at Minute 5 Graph
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Figure A.3. Sucrose Concentrations Measurements at Minute 6 Graph

Figure A.4. Sucrose Concentrations Measurements at Minute 7 Graph
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Figure A.5. Sucrose Concentrations Measurements at Minute 8 Graph

Figure A.6. Sucrose Concentrations Measurements at Minute 9 Graph
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Figure A.7. Sucrose Concentrations Measurements at Minute 10 Graph

Figure A.8. Sucrose Concentrations Measurements at Minute 12 Graph
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Figure A.9. Sucrose Concentrations Measurements at Minute 13 Graph

Figure A.10. Low Bacteria Concentration(102, 103, 104) and High Bacteria
Concentration(105, 106, 107) Measurements at Minute 0

76



Figure A.11. Low Bacteria Concentration(102, 103, 104) and High Bacteria
Concentration(105, 106, 107) Measurements at Minute 4

Figure A.12. Low Bacteria Concentration(102, 103, 104) and High Bacteria
Concentration(105, 106, 107) Measurements at Minute 10
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Figure A.13. Low Bacteria Concentration(102, 103, 104) and High Bacteria
Concentration(105, 106, 107) Measurements at Minute 12

Figure A.14. With and Without Bacteria Solution Measurements at Minute 0
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Figure A.15. With and Without Bacteria Solution Measurements at Minute 4

Figure A.16. With and Without Bacteria Solution Measurements at Minute 10
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Figure A.17. With and Without Bacteria Solution Measurements at Minute 12
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