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AB ST R ACT  

The external calibration of a camera system is essential for most of the applications that involve an omnidirectional and a 

pan-tilt-zoom (PTZ) camera. The methods in the literature fall into two major categories; 1) a complete external calibration 

of the system which allows all degrees of freedom but highly time consuming, 2) spatial mapping between the pixel 

coordinates in omnidirectional camera and pan/tilt angles of the PTZ camera instead of explicitly computing the rotation 

and translation. Most methods in this category make restrictive assumptions about the camera setup such as optical axes of 

the cameras coincide. We propose an external calibration method that is effective and practical. Using the two-view 

geometry principles and making reasonable assumptions about the camera setup, calibration is performed with just two 

scene points. We extract rotation using the point correspondences in images. Locating the PTZ camera in the 

omnidirectional image is used to find the translation parameters and the real distance between the two scene points lets us 

compute the translation in correct scale. Results of the simulated and real image experiments show that our method works 

effectively in real world cases and its accuracy is comparable to the state-of-the-art methods. 

2012 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Hybrid camera systems consisting of an omnidirectional 

camera and a pan-tilt-zoom (PTZ) camera are widely used 

especially in surveillance applications. An omnidirectional 

camera provides 360° horizontal field of view with a low 

resolution whereas a PTZ camera provides high resolution 

images viewing a certain direction. A hybrid system combines 

the powerful aspects of both camera types and aims wide-angle 

high resolution surveillance. A typical task is to detect a moving 

object via omnidirectional camera and directing the PTZ camera 

towards the position of the moving object [1]. 

The external calibration of a hybrid system, i.e. estimation of 

camera poses with respect to each other, is fundamental for a 

cooperative use. Previously proposed calibration methods are 

either not practical enough to effectively determine the extrinsic 

parameters or they make restrictive assumptions which limit the 

applicability. This is the main motivation of our study.  

We propose a practical calibration method that is based on 

two-view geometry principles and makes reasonable assumptions 

about the camera setup. Our method firstly extracts rotation using 

only two scene points and their pixel coordinates in the hybrid 

image pair. Afterwards, PTZ camera is located in the 

omnidirectional image and its pixel coordinates are used to find 

the translation parameters. Finally, the real 3D distance between 

the two scene points lets us compute the translation in correct 

scale, which is the distance between camera centers. Intrinsic 

calibrations of both cameras are obtained a priori. 

The organization of the paper is as follows. In Section 2, we 

summarize the related work and explain the difference in our 

method. In Section 3, we explain the steps of the proposed two-

point calibration method. The results of our experiments are 

presented in Section 4. The average accuracy obtained with both 

synthetic and real images are given together with a discussion 

comparing our results with other state-of-the-art methods. 

Section 5 summarizes the conclusions of our study. 

2. Related work 

A significant portion of the previously proposed methods 

perform a complete external calibration of the hybrid system 

without restricting the rotation and translation between the hybrid 

camera pair. Although these methods provide accurate results, 

the calibration procedures are time consuming due to extracting 

required number of point correspondences. Moreover, in most 

cases these methods are computationally expensive. For instance, 

a large pattern on the floor is required for the method in [2]. 

Following the internal calibration of the omnidirectional camera 

at the ceiling, the geometric relationship between omnidirectional 

and perspective camera is derived using point correspondences in 

both camera images. Then the perspective cameras are calibrated. 

For the method in [3], a calibration pattern is required to be 

captured at different spatial positions. In [4], the extrinsic 

parameters (rotation and translation between the cameras) of the 

hybrid system are extracted via 3D Euclidean reconstruction of 

scene points following projective reconstruction by factorization 

which is computationally involved and also expensive due to 

using non-linear minimization techniques such as Levenberg–
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Marquardt. In another method falling into this category [5], 

external calibration is performed by solving the epipolar 

geometry between the two cameras. The relative position of the 

active camera with respect to the static camera is solved together 

with the parameters associated with active camera’s pan and tilt 

mechanism. In [6], authors focus on multi-view structure-from-

motion and perform external calibration with essential matrix 

estimation using many points. The omnidirectional and 

perspective cameras are moving freely in 3D space with any 

orientation.  

Another major group of approaches, that use PTZ camera in a 

hybrid system, do not solve for extrinsic parameters explicitly. 

Instead, they compute a spatial mapping between omnidirectional 

and pan-tilt parameters of the PTZ camera. In other words, they 

estimate the corresponding pan and tilt angles of the PTZ camera 

for a given pixel coordinate in omnidirectional image. It is 

assumed that the pan and tilt angles of a PTZ camera are highly 

correlated with the corresponding pixel coordinates in the 

omnidirectional image. For some methods, this mapping is based 

on data collection and fitting (interpolation) where no geometric 

information about the camera setup is used ([7], [8]). Other 

methods of spatial mapping (such as [9], [10], [11], [12], [13]) 

make assumptions to be able to use geometric constraints. One of 

the most common assumptions is that the optical axes of the two 

cameras coincide [12] (i.e. one is on top of the other). In some 

studies, this assumption is even further extended. For instance, in 

[10] authors assume that the camera origins are at the same 

location which is not possible in a real camera setup. They relate 

the distance between a pixel and the center of the omnidirectional 

image to the vertical angle (tilt) that is used to move the PTZ 

camera. 

Another common restriction/assumption for a camera setup is 

that the relative position and orientation of the cameras are 

known. Examples are given in [9], [11] and [14]. Instead of 

employing an external calibration method, such as ours, they use 

the manually measured distance between the cameras. In [11], the 

height of the omnidirectional camera is fixed as well to be able to 

measure the distance to the object of interest. 

In [13], Tan et al. propose a method to calculate the relative 

position of the optical centers of the two cameras based on 

parameters extracted from two sample scene points. Then, they 

use this relative distance information as an input to spatial 

mapping. For relative position estimation, they assume that the 

sample points (also target object to be tracked) are on a 2D plane 

and optical axes of both omnidirectional and the PTZ cameras are 

perpendicular to this plane.   

The methods in this second group are more practical than the 

ones in the first group (complete external calibration), however 

the assumptions they make can be too restrictive due to several 

reasons: 1) Optical axes of the two cameras may not coincide. 

This assumption can be satisfied only for the setups where one 

camera is exactly on top of each other. 2) The distance between 

the cameras may not be measured manually. One may not be able 

to put a measuring tape (or a measuring laser) between them due 

to an obstacle. Putting a great effort to manually measure the 

distance is not practical since it is to be repeated when any of the 

cameras is moved.  (e.g. cameras in a parking lot are moved for a 

better or a different view [13]). This requires a practical method 

for re-calibration. 3) The point correspondences used for 

calibration may not be on a 2D plane, or this plane may not be 

perpendicular to the optical axes. Such an assumption restricts 

the method to use a suitable (or prepared) surface with planar 

feature points on it. 

Our method does not make the assumptions made by the 

previously proposed practical solutions, therefore the restrictions 

mentioned in the previous paragraph do not exist in our 

approach. Only assumption we make is mounting the cameras to 

the surfaces that are parallel to the ground, which can be satisfied 

by using man-made surfaces such as ceilings (indoor or outdoor). 

Our method is similar to the relative position estimation method 

in [13] but without the restriction of point correspondences 

should lie on a 2D plane which is perpendicular to the optical 

axes of the cameras. Here, we do not propose a spatial mapping 

method (as done in [9], [10], [11], [12], [13]), although the 

parameters estimated with our method can be used for any spatial 

mapping method. 

3. Our method 

Our method is based on the principles of two-view camera 

geometry where a 3x3 matrix, called the fundamental matrix, 

encompasses the geometric relation (the translation and rotation) 

between the two cameras or views from two different positions of 

a camera. With the standard method, eight point correspondences 

between the two views are required to compute the fundamental 

matrix [15], or 7 point correspondences if the rank constraint is 

used. 

In case of calibrated cameras, another matrix, called the 

essential matrix, can be computed with the point 

correspondences. Rotation and translation parameters can be 

extracted from the essential matrix easily. It is possible to 

compute the essential matrix with as few as five point 

correspondences [16], instead of eight, however the algorithm is 

computationally involved as it requires Gröbner basis solver to 

find the roots of a tenth degree polynomial.  

Reasonable assumptions about the camera setup let us perform 

the external calibration with easier procedures and less number of 

point correspondences. For instance, when the optical axes of the 

two cameras coincide (e.g.[10],[12]) there is only two degrees of 

freedom: the translation in the vertical direction and the rotation 

around the common optical axis. As mentioned previously, we do 

not assume a certain camera setup and we aim to develop a 

practical external calibration method that can be used when the 

cameras are moved. However, one reasonable assumption we 

make is mounting the cameras to the surfaces that are parallel to 

the ground such as the ceiling. This makes the optical axis of the 

omnidirectional camera perpendicular to the ground. As for the 

PTZ camera, there are two more rotational degrees of freedom 

which are the rotation between the cameras around the optical 

axis and the tilt angle. We set the PTZ camera to the docking 

reference (i.e. zero pan and tilt) however the angle between the 

zero pan and the coordinate system of the second camera is still 

to be estimated. We denote this angle with β in the rest of the 

paper. Tilt angle of the PTZ camera, on the other hand, is 

assumed to be zero relying on the docking reference. In the 

following, we explain how the remaining extrinsic parameters (β 

angle and the translation vector) of such setup are solved using 

only two point correspondences. 

3.1. Intrinsic calibration 

Our method employs an omnidirectional and a PTZ camera 

for which internal calibrations are obtained a priori. This is not a 

strong assumption since there are readily available toolboxes and 

it has to be done just once. Only the zoom parameter of PTZ 

camera affects internal calibration, which can be fixed to a 

certain value during the calibration task. Once the internal and 

external calibration tasks are over, zooming in and out does not 

affect extrinsic parameters. 
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For PTZ camera calibration, we use the method proposed in 

[17] and implementation is available as a MATLAB Toolbox 

[18]. For the omnidirectional camera, we use the sphere camera 

model [19] which is able to cover both catadioptric (mirrored) 

omnidirectional cameras and fisheye cameras. There are a few 

calibration methods proposed for the calibration using the sphere 

model [20][21], we preferred to employ [20] since a MATLAB 

toolbox is provided. 

3.2. Two-view geometry 

Let us briefly review the geometry between two cameras (or 

views). Coordinates of points in two views have the following 

relationship 

𝒙′𝑻𝑭 𝒙 = 0 (1) 

where 𝑭 is the 3x3 fundamental matrix, and 𝒙′ and  𝒙 are the 

corresponding points in the two images in homogeneous 

coordinates. When the cameras are calibrated, fundamental 

matrix can be formulized using the calibration matrices of the 

two cameras, 𝑲′ and 𝑲, as follows 

𝑭 = 𝑲′−𝑻𝑬𝑲−𝟏 (2) 

where 𝑬 is the 3x3 essential matrix satisfying the following 

equation 

𝒙′𝑻 𝑬 𝒙 = 0 (3) 

This looks similar to the fundamental matrix relationship with 

the difference that 𝒙′ and 𝒙 are normalized 3D rays. These are the 

vectors representing rays outgoing from camera center and 

passing through the image point. Essential matrix actually 

encompasses the rotation and translation information between the 

camera views and can be written as 

𝑬 = [𝒕]×𝑹 (4) 

where [𝒕]× is the cross product in matrix form obtained with the 

translation vector 𝒕, and 𝑹 is the 3x3 rotation matrix. 

Essential matrix is estimated with point correspondences from 

the two images. Each correspondence gives an equation that is 

equal to zero. Then, the rotation and translation parameters can 

be obtained from 𝑬. In our method, as will be explained next, 

exploiting the constraints on the rotation and also extracting 𝒕 

from images, we are able to estimate 𝑬 with as few as two point 

correspondences. 

3.3. Estimating the unknowns in our method 

Fig.1 shows the geometric relation between omnidirectional 

camera and the PTZ camera. Omnidirectional camera is 

represented as a perspective camera looking upwards to a mirror 

surface but any single-viewpoint omnidirectional camera 

complies with our approach. The Z axis of the PTZ camera is 

looking towards the scene points.  

 

 

 

 

 

 

 
Fig. 1. Two view geometry (rotation and translation) between the 

omnidirectional and PTZ cameras. Omnidirectional camera is on the right, 

represented as a perspective camera looking upwards to a mirror. PTZ camera 

is represented as a perspective camera on the left. 

We assume here the PTZ camera is in its docking reference, 

i.e. pan and tilt angles are zero. There is a rotation around the Y 

axis of the PTZ camera coordinate frame. This is the rotation 

between the docking reference of PTZ camera and the 

omnidirectional camera and it is denoted by β as mentioned 

earlier in this section. In addition, there is a 90° rotation around X 

axis. Since the cameras are mounted to the surfaces that are 

parallel to the ground, these two rotations are enough constitute 

the 𝑹 between the cameras as follows: 

𝑹𝒀 = , 𝑹𝑿 = , 

𝑹 = 𝑹𝒀𝑹𝑿 = 
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To make the estimation of 𝒕 easier, we locate the PTZ camera 

in the omnidirectional image by manually marking the 

corresponding pixel in the omnidirectional image. This is not 

hard to achieve thanks to the wide FOV of the omnidirectional 

camera. In our experiments, for instance, we use a fisheye camera 

and it is enough not to place the PTZ camera at a higher level 

than the omnidirectional camera. An example of marking the 

PTZ camera center is given in Section 4.2. We will also present 

an analysis (in Section 4.1) to show how much our algorithm is 

robust to errors that occur while locating the PTZ camera.  

The pixel coordinates of the marked PTZ camera location is 

converted to a 3D ray, 𝒄, outgoing from the center of the 

omnidirectional camera. This is not the exact 3D location of the 

PTZ camera, however we know that the PTZ camera center is on 

vector 𝒄. 𝑹 and 𝒄 together let us compute 𝒕 up to a scale factor. 

With the explained geometric relations, 𝑬 is written as 

follows: 

𝑬=[𝒕]×𝑹=
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where      [𝒕]×=  (7) 

and the components of the translation vector can be written as 

𝒕 = 𝑹 ∙ (−𝒄) =
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Let 𝒙′ = (x',y',1) and  𝒙 = (x,y,1). Using equations (3) and (6), 

each point correspondence gives us an equation: 

tx(1+xy'sin(β) + y'ycos(β)) + ty(ysin(β) - xcos(β) 

- x'ycos(β) - xx'sin(β)) + tz(xy'cos(β) - x' - y'ysin(β)) = 0 (9) 
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This equation has one unknown, β, but two roots. Only one of 

these roots is true rotation angle around Y axis. To find the 

correct root we use two point correspondences, i.e. two 

equations, and select the common root. In real life cases, where 

the coordinates are noisy, the solutions that are close to each 

other are chosen. 

Using two correspondences also gives us a chance to compute 

the actual scale of the translation, since our estimated translation 

vector was correct up to a scale factor. The two points used for 

rotation estimation can be reconstructed in 3D space after the 

camera matrices are obtained. This is done by triangulation [22]. 

The real distance between these two points can then be divided to 

the distance between estimated (reconstructed) points to obtain 

the scale ratio. This ratio is then used to correct the estimated 

translation, 𝒕. 

3.4. The two-point calibration algorithm 

The complete procedure of the proposed external calibration 

method can be enumerated as follows: 

Step 1: Read the image coordinates of two sample points in 

both omnidirectional and PTZ camera images. Calculate the 

outgoing 3D rays of these sample points (using intrinsic 

parameters). 

Step 2: Locate the PTZ camera in the omnidirectional image 

by manually marking the corresponding pixel. Calculate the 

3D ray of that pixel, obtain 𝒄. This is the direction of PTZ 

camera center when looked from the omnidirectional camera 

center. 

Step 3: Estimate β using the two-view geometry relations. 

Repeat this for two different point correspondences. Each 

correspondence gives two solutions, select the common one. If 

both solutions are common (points with same pan angle) 

choose another two-point pair. 

Step 4: Estimate 𝒕 using β (Step 3) and 𝒄 (Step 2). The 

estimated translation at this point is correct up to a scale 

factor. 

Step 5: Compute 𝑬 with the estimated β and 𝒕. Calculate the 

3D locations of the two sample points by triangulation. Also 

compute the distance between these reconstructed 3D points. 

Step 6: Measure the distance between the two 3D points’ real 

locations manually. The difference between the measured and 

the estimated (Step 5) distances is the scale ratio. Use this 

ratio to correct the scale of the 𝒕 estimated in Step 4. The 𝒕 

obtained here is the final estimate of translation. 

3.5. The rotation parameters when the PTZ camera is turned 
after calibration 

During the calibration procedure, pan and tilt angles of the 

PTZ camera are set to the docking references (zero angle). Once 

the calibration is over, certainly the camera within the PTZ dome 

is rotated. This does not affect the estimated translation 𝒕 since 

the camera centers are not moved; however applied pan/tilt 

angles change the rotations around X and Y axes and matrices 

given in Eq. 5 are no more valid. Let us explain how to update 

the rotation parameters.  

With the external calibration, the angle between the 

omnidirectional camera and the zero pan of the PTZ camera is 

estimated (denoted by β). When the PTZ camera is rotated within 

its dome, the actual rotation between the current camera 

orientations can be found by adding the ‘within-dome’ rotation of 

PTZ camera (let us denote by ) to the estimated β. As a result, 

referring to Fig. 1, the rotation around Y axis anytime during the 

operation is equal to  + β. 

 Another concern is the tilt applied to the PTZ camera. The 

external calibration is performed when the tilt is zero (docking 

reference) and at that point there is a rotation of 90° around X 

axis (cf. 𝑹𝑿 in Eq. 5 and Fig.1). After moving the PTZ camera 

within the dome with an amount of γ, total rotation around X axis 

becomes γ+90°. 

4. Experiments 

4.1. Experiments with simulated images 

First, we analyze the proposed method in a simulated 

environment. Fig. 2 shows the simulated setup for the 

experiment. We place our omnidirectional camera to the origin. It 

is represented as a perspective camera looking upwards to a 

mirror. Simulated PTZ camera is located exactly at (-0.8, 0.2, 0). 

200 points were randomly generated and distributed in a 3D 

volume to which perspective camera is directed. Fig. 3 shows 

sample omnidirectional and perspective images. The PTZ image 

is one megapixel, whereas the omnidirectional image is five 

megapixels. These resolution values are in accordance with the 

real cameras we possess which are used for the real image 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Simulated environment with one omnidirectional camera, one 

PTZ (perspective) camera and a number of scene points. 

 

   
  a            b 

Fig. 3. Sample omnidirectional (a) and perspective (b) images captured 

in the simulated environment. Scene points cover the whole perspective 

image but only a part of the omnidirectional image. 
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When no noise is added to the point coordinates, the algorithm 

gives the correct values without any error. The only exception is 

that when both of the selected image points have the same pan 

angle, then two solutions are obtained, one of which is correct. In 

the experiments, we discard that point pair and pick a different 

one. In our simulations, we measured the percentage errors in 

estimated β and estimated 𝒕 when different amounts and types of 

noise are added: 

N1. Pixel coordinate noise: occurs while reading the 

corresponding point coordinates in the images. The standard 

deviation of the amount of the noise is incrementally increased 

from 0 to 1 pixel. 

N2. PTZ camera location noise: occurs while locating the 

pixel coordinates of the PTZ camera within the omnidirectional 

image. The standard deviation of noise amount is incrementally 

increased from 0 to 5 pixels. 

N3. Distance measurement noise: occurs while measuring 

(manually) the distance between the real 3D locations of the two 

selected point correspondences. The standard deviation of noise 

amount is incrementally increased from 0 to 5 percent. 

N4. Tilt with respect to the ground noise: occurs when the 

zero tilt position of the PTZ camera is not perfectly parallel to the 

ground level. The standard deviation of noise amount is 

incrementally increased from 0 to 0.3 degrees.  

For each different noise type and amount, the experiments 

were repeated 100 times and average error is recorded. In the 

experiment, results of which are given in Fig. 4, only pixel 

coordinate noise (N1) is added to the measurements obtained 

from the simulated environment. It can easily be inferred that an 

increase in coordinate reading noise increases the parameter 

estimation error. In the second experiment (Fig. 5), varying 

amount of PTZ camera location noise is added to a pixel 

coordinate noise of 0.4 pixels (N2+ fixed N1).  

For the experiment in Fig. 6, varying amount of distance 

measurement noise is added to a pixel coordinate noise of 0.4 

pixels and a PTZ camera location noise of 1.0 pixel (N3 + fixed 

N2 + fixed N1). Distance noise is given as a percentage of the 

original distance. E.g. 1% noise means 1 cm error in 1 m 

distance. We were expecting that only translation error is 

negatively affected by an increase in the distance measurement 

noise because the measured distance is used only for 𝒕 estimation 

after β is estimated. The results are in accordance with this 

expectation. 

For the experiment in Fig. 7, varying amount of tilt with 

respect to the ground noise is added to a pixel coordinate noise of 

0.4 pixels and a PTZ camera location noise of 1.0 pixel (N4 + 

fixed N2 + fixed N1). Tilt noise is added as altered angles in both 

of the horizontal axes with a standard deviation of 0-0.3 degrees. 

We understand from the results that the estimations of translation 

vector and β angle are very sensitive to an existing tilt. More than 

0.3 degree tilt severely disrupts the estimation accuracy. We will 

further discuss the effect of tilt while presenting real image 

experiments in the succeeding subsection. 

4.2. Experiments with real images 

Images of our experiments were captured with an Oncam 

Grandeye 360° omnidirectional camera with a fisheye sensor and 

a Samsung SNP-5300 PTZ camera pair. Both cameras were 

modelled with the sphere camera model and calibrated using the 

techniques given in Section 3.1. The cameras were fixed to tables 

that are supposed to be parallel to the ground. No extra effort was  

 
Fig. 4. Percentage errors in β and 𝒕 estimates when varying amount of 

pixel coordinate noise is added. The std. dev. of the noise varies between 0.2 

and 1 pixel. Original β is 0.35 radians (20°). Original |𝒕| is 0.8246 meters.  

 
Fig. 5. Percentage errors in β and 𝒕 estimates when varying amount of 

PTZ camera location noise is added. The std. dev. of the noise varies between 

1 and 5 pixels. There is also a fixed amount of pixel coordinate noise (0.4 

pixels). Original β is 0.35 radians (20°). Original |𝒕| is 0.8246 meters. 

 
Fig. 6. Percentage errors in β and 𝒕 estimates when varying amount of 

distance measurement noise (1%-5%) is added. There is also a fixed amount 

of pixel coordinate noise (0.4 pixels) and PTZ camera location noise (1 

pixel).  Original β is 0.35 radians (20°). Original |𝒕| is 0.8246 m.  

 
Fig. 7. Percentage errors in β and 𝒕 estimates when varying amount of 

tilt w.r.t. the ground noise is added. The std. dev. of the noise varies between 

0 and 0.3 degrees in both horizontal axes. There is also a fixed amount of 

pixel coordinate noise (0.4 pixels) and PTZ camera location noise (1 pixel). 

Original β is 0.35 radians (20°). Original |𝒕| is 0.8246 m. 

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0

β_error 

t_error

0

2

4

6

8

10

1 2 3 4 5

β_error 

t_error

0

2

4

6

8

10

1 2 3 4 5

β_error 

t_error

0

5

10

15

0 0.1 0.2 0.3

β_error 

t_error



6 

spent to make them perfectly parallel. The true distance between 

the camera centers were 105 cm (measured manually). A hybrid 

image pair can be seen in Fig. 8.  

As summarized in Section 3.4, our algorithm starts with 

selecting two point correspondences in the hybrid image pair. To 

be able to repeat the experiment many times and record the 

average performance, we selected more than 10 point 

correspondences for each of the hybrid image pair used. An 

example set of correspondences are also marked in Fig. 8. The 

next step is locating the PTZ camera in the omnidirectional 

image. The location of the PTZ camera is marked with a large red 

circle in the omnidirectional image. The center of that circle, 

marked with a red dot, is assumed to be the center of the PTZ 

camera, coordinates of which is used in the rest of the algorithm. 

After β and 𝒕 are estimated (Steps 3 and 4), the 3D locations of 

the two sample points are computed by triangulation (Step 5). In 

Fig. 9, we show a top-view of the 12 reconstructed 3D scene 

points, two of which are used at each trial of our method. 

 

 
a 

 

 
b 

Fig. 8. A pair of omnidirectional (a) and PTZ (b) camera images. 12 

point correspondences which are used for the experiments are marked on both 

images. 

 

 

Fig. 9. A top-view of the reconstructed cameras and 12 reconstructed 3D 

scene points. The omnidirectional camera is indicated with a circle around it, 

Z axis of which is looking down. Z axis of the perspective camera (PTZ 

camera) is looking toward the reconstructed scene points. The distance 

between any two of these reconstructed points is compared with the measured 

real distance between the points to obtain the scale ratio.  

 

Finally, the ratio between the measured distance between the 

two 3D points’ real locations and the estimated distance 

(previous step) is assigned as the scale ratio. We use this ratio to 

refine the 𝒕 estimate, magnitude of which is supposed to be equal 

to the actual distance measured between camera centers (105 

cm). We have performed 30 experiments of estimating 𝒕 using 

three different hybrid image pairs. The average of estimated |𝒕| is 

105.5 cm where the standard deviation is 4.5 cm. Average 

percentage error is 3.1%, with a maximum error of 10.9% 

(estimated 93.5 cm). When we compare the average 3.1% 

distance error with the results of the simulated image experiments, 

we can conclude that the pixel coordinate noise, PTZ camera 

location noise and distance measurement noise are supposed to 

be below 0.4 pixels, 2 pixels and 2% respectively since these are 

the conditions that generate 4% error in |𝒕| estimation (cf. Figures 

4, 5, and 6). Also having an average |𝒕| error of 3.1% indicates 

that tilt with respect to the ground is not more than 0.1° (cf. 

Fig.7). 

Regarding the estimation of β, we do not have a ground truth 

value since the rotation between the camera axes cannot be 

perfectly set while fixing the cameras. However we are able to 

interpret the average and standard deviation of the estimates. The 

average of the β estimates for the image pair given in Figures 8 

and 9 is 137.27° with a standard deviation of 0.31°. When the 

total of 30 estimates including different image pairs are 

considered, the standard deviation is 0.22°. This low variation in 

the estimates can be interpreted as an indication of high accuracy. 

4.3. Comparison with other methods 

We consider that the error in |𝒕| estimation is acceptable when 

compared with other methods in the literature. For the method 

given in [4], authors presented external calibration errors for 

varying amount of pixel coordinate noise (cf. simulated 

experiments results in Fig. 3 in [4]). When the noise is 0.4 pixels, 

the average rotation angle errors vary between 2°-5° and the 

translation error varies between 3% - 7% for each axis (would be 

larger for |𝒕|). These error rates are higher than the ones we 

β 
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obtained. The comparison given above made with first stage of 

the method in [4], which is solved linearly. We considered this 

stage as an alternative to ours since it is relatively simple, 

although it requires 9 to 36 point correspondences. In the second 

stage of the algorithm, the angle errors can be minimized to ~1° 

average and translation errors to ~1% average, however this 

requires applying projective reconstruction by factorization 

which is computationally expensive due to using non-linear 

minimization techniques such as Levenberg–Marquardt. 

Among the previously proposed practical solutions for using 

an omnidirectional-PTZ camera pair, only of them actually 

estimates the relative position and orientation of the cameras, 

which is given in [13]. Therefore, we compared the accuracy of 

the parameter estimation of our method only with [13]. The 

authors of the study presented in [13] did not compare their 

distance estimation error with ground truth values. However they 

record their errors of pan and tilt angle estimates. Mean absolute 

errors were recorded as 2.15° and 0.77° for pan and tilt angles 

respectively. 2.15° makes an error of 11% when the actual value 

is 20°, which is the rotation value (β) set in our simulations. We 

generally obtained lower errors in β estimation (Figures 4-7). 

Moreover, in real image experiments we obtained a standard 

deviation of 0.22° in our estimates of β value. 

Neglecting small rotation errors during setup makes our 

method very practical (external calibration with just two points). 

The effect of these small rotations would be significant if we 

were working on structure-from-motion and 3D reconstruction. 

However, in most of the applications including an 

omnidirectional-PTZ camera pair, the step after the external 

calibration is directing the active (pan-tilt) camera to the object 

located in the omnidirectional image. As we observe in the 

referred studies (e.g. [13]), the errors we face (namely <4° pan 

angle (β) error and 3% translation (|𝒕|) error) do not prevent us 

from directing the PTZ camera successfully. 

5. Conclusions 

We have developed an effective and practical external 

calibration method for an omnidirectional-PTZ camera pair. The 

existing methods in the literature either solve the complete 

external calibration of the system allowing all degrees of freedom 

or they make restrictive assumptions about the camera setup such 

as camera optical axes should coincide or the selected scene 

points should lie on a 2D plane.  

With the method proposed in this paper, using the principles 

of two-view geometry and making reasonable assumptions about 

the camera setup, calibration can be performed with just two 

scene points. We assume the optical axes of both cameras to be 

perpendicular to the ground which can be satisfied by using 

surfaces like a table or the ceiling. We also fix the PTZ camera to 

its docking reference (zero pan and tilt angles). We extract 

rotation between the camera coordinate systems using the point 

correspondences in the hybrid image pair. Locating the PTZ 

camera in the omnidirectional image is used to find the 

translation parameters and the real 3D distance between the two 

scene points lets us compute the translation in correct scale.  

What we propose is not a spatial calibration method, but the 

extrinsic parameters estimated with our method can be used for 

any spatial mapping method. This would make most of the 

existing methods more versatile as we do not make restrictive 

assumptions. 

We performed simulated and real image experiments to 

analyze the applicability and accuracy of the proposed algorithm. 

Results show that our method works in real world cases and the 

accuracy is comparable to the state-of-the-art methods. Although 

the accuracy could be increased by using more point 

correspondences, this would deteriorate the practical side of our 

method.   
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