
A DIRECT APPROACH FOR HUMAN DETECTION WITH 

CATADIOPTRIC OMNIDIRECTIONAL CAMERAS 

Ibrahim Cinaroglu, Yalin Bastanlar 

Computer Engineering Department  

İzmir Institute of Technology  

İzmir, Turkey  

{ibrahimcinaroglu,yalinbastanlar}@iyte.edu.tr 

 
 

ABSTRACT 

 
This paper presents an omnidirectional vision based solution to 

detect human beings. We first go through the conventional sliding 

window approaches for human detection. Then, we describe how the 

feature extraction step of the conventional approaches should be 

modified for a theoretically correct and effective use in 

omnidirectional cameras. In this way we perform human detection 

directly on the omnidirectional images without converting them to 

panoramic or perspective image. Our experiments, both with 

synthetic and real images show that the proposed approach 

produces successful results. 

Keywords— Omnidirectional cameras; object detection; 

pedestrian detection; human detection  

1.  INTRODUCTION  

Detecting people with cameras is an important task for many 

research and application areas such as visual surveillance, 

ambient intelligence and pedestrian safety. Last decade has 

witnessed significant advances in human detection both in 

terms of effectiveness and processing time. 

Quite a variety of approaches have been proposed for 

pedestrian detection and in general for human detection. A 

major group in these studies uses the sliding window approach 

in which the detection task is performed via a moving and 

gradually growing search window. A significant performance 

improvement was obtained with this approach by employing 

HOG (Histogram of Oriented Gradients) features. Inspired by 

SIFT (Scale Invariant Feature Transform) [1], Dalal and 

Triggs [2] proposed to use HOG for the feature extraction step 

and they used SVM (Support Vector Machines) for the 

classification step. Later on, this technique was enhanced with 

part based models. For instance, Felzenswalb et al. [3] 

proposed a method using parts of the object which are spring-

like connected to each other and can move independently. 

Another notable enhancement was using pyramid HOG 

features and Intersection Kernel SVM proposed by Maji et al. 

[4]. 

Edge based features [5] and ‘shapelets’ [6] are examples of 

other features which were used for human detection. More 

recently, it was shown that using combinations of features 

outperforms the approaches that use a single type of feature 

[7]. For a detailed summary and comparison of methods we 

refer readers to [8], where an extensive evaluation of the 

above mentioned and many other pedestrian detection 

algorithms exists. 

Omnidirectional cameras provide 360° horizontal field of view 

in a single image (vertical field of view varies). If a convex 

mirror is placed in front of a conventional camera for this 

purpose, then the imaging system is called a catadioptric 

omnidirectional camera (Fig. 1). With its enlarged view 

advantage, fewer omnidirectional cameras may substitute 

many perspective cameras. However, so far omnidirectional 

cameras have not been widely used in object detection 

research area and also in traffic applications like pedestrian 

and vehicle detection. 

In a study on object recognition with omnidirectional cameras 

[9], a mobile robot is given the images of several objects in the 

environment and it is asked to recognize these objects. 

Actually, the omnidirectional image is warped into a 

cylindrical panoramic image before matching with the images 

of the objects. SIFT matching is employed without any 

modification for omnidirectional cameras. In [10], authors use 

Haar features to perform face detection with catadioptric 

omnidirectional cameras. Instead of modifying the feature 

extraction step, they convert the omnidirectional images into 

panoramic images and directly use the conventional 

(perspective) camera technique. In a similar manner, 

panoramic images are used in [11] for human detection. 

A human tracking method for omnidirectional cameras is 

proposed in [12]. As a part of the proposed algorithm, HOG 

features are computed. However, a rectangular rotating and 

sliding window is used with no mathematical modification for 

the omnidirectional camera. 

    
                           (a)       (b) 

Fig. 1. (a) A mirror apparatus is placed in front of a conventional camera to 

obtain a catadioptric omnidirectional camera. (b) An example image obtained 

by such a camera. 



In this paper, we propose a direct approach to tackle human 

detection on catadioptric omnidirectional images. That is, we 

do not convert the omnidirectional images to panoramic or 

perspective images. To our knowledge, the proposed method 

is the first one to detect humans directly on omnidirectional 

images. In Section 2, we explain why our approach is 

theoretically correct. We adopt HOG+SVM [2] approach for 

human detection and as explained in Section 3, we modify the 

HOG feature extraction step for catadioptric omnidirectional 

cameras. With experiments, given in Section 4, we 

demonstrate that the adaptation of HOG features improves the 

performance significantly. 

2. PROCESSING OF OMNIDIRECTIONAL IMAGES 

Due to their nonlinear imaging geometry, working with 

omnidirectional cameras requires geometric transformations. 

At first sight, converting an omnidirectional image to a 

panoramic or several perspective images may seem to be a 

practical solution. However, it has two major drawbacks: The 

conversion can be computationally expensive for large frames 

especially when an omnidirectional image is converted to 

numerous perspective images to properly fit sliding windows. 

More importantly, the interpolation required by the image 

warping introduces artifacts that affect the detection 

performance. 

Among a small number of omnidirectional object detection 

studies (cf. Section 1), none of them developed a method 

peculiar to omnidirectional cameras. On the other hand, last 

decade witnessed some effort on computing SIFT features in 

omnidirectional images. These studies consider the 

convolution step of SIFT and avoid warping omnidirectional 

images. Below, we describe these approaches and summarize 

their properties. 

 The simplest approach would be backprojecting the 
image onto a sphere surface    and convolving it with a 
spherical Gaussian function GS [14]. Since this 
approach requires resampling of the whole image, 
authors in [13] project the kernel GS into image plane 
instead of backprojecting the image onto   , and the 
convolution is carried directly in the image plane. This 
avoids image resampling but since the mapped 
Gaussian kernel changes at every image location it 
leads to an adaptive filtering. Such complexity makes 
the solution unsuitable. 

 Another approach processes omnidirectional images on 
the sphere after an inverse stereographic projection [15]. 
Scale space is computed with Gaussian kernels on the 
sphere, while, the convolution is performed using the 
spherical Fourier transform. It was stated in [16] and 
[17] that this operation leads to aliasing issues due to 
bandwidth limitations. 

 The processing on the sphere is achieved through a 
suitable differential operator that adapts to the non-
uniform resolution, while using the original image pixel 
values. In [18], scale space representation is computed 
using the heat diffusion equation and differential 

operators (Laplace–Beltrami operators) on the non-
Euclidean (Riemannian) manifolds. Moreover, authors 
in [16] tested this approach by evaluating the matching 
performance of SIFT on rotated and translated images. 
Lastly, authors in [19] compared the original SIFT with 
the version modified by Laplace–Beltrami operators on 
the Riemannian manifolds and mentioned that the 
modified version has a better performance. They also 
extend the approach to all central catadioptric systems. 

Exploiting the experience gained by the summarized previous 

work, we decided to compute the gradients on Riemannian 

manifolds and adapted the HOG computation step (Section 

3.1) of our algorithm accordingly. 

3. THE PROPOSED HOG COMPUTATION 

To detect the standing people in omnidirectional images, we 

rotate the rectangular sliding window around the image center. 

In addition, to achieve a mathematically correct detection 

method, we modify the image gradients. The operations that 

we perform can be divided into two steps: 

1. Modification of gradient magnitudes using Reimannian 

metric. 

2. Conversion of gradient orientations to form an 

omnidirectional (non-rectangular) sliding window. 

3.1. Modification of Gradient Magnitudes Using Reimannian 

Metric 

3.1.1. Sphere camera model 

We use the sphere camera model [20] which was introduced to 

model central catadioptric cameras. The model comprises a 

unit sphere and a perspective camera. The projection of 3D 

points can be performed in two steps (Fig. 2). The first one is 

the projection of point Q in 3D space onto a unitary sphere, 

resulting in point r, and the second one is a perspective 

projection from the sphere to the image plane, resulting in 

point q. This model covers all central catadioptric cameras 

with varying ξ. ξ = 0 for perspective cameras, ξ = 1 for para-

catadioptric cameras (the ones using a paraboloidal mirror), 0 

< ξ < 1 for hyper-catadioptric cameras (the ones using a 

hyperboloidal mirror). 

A point on the sphere           can also be represented by 

two angles (    , the former is the vertical angle and the latter 

is the azimuth (Fig. 3a). In para-catadioptric case (ξ = 1), if we 

place the image plane at the south pole (which only differs the 

scale),           and the perspective projection within the 

sphere model corresponds to the stereographic projection (Fig. 

3b). 

3.1.2. Differential operators on Riemannian manifolds 

Let us briefly describe how the differential operators on the 

Riemannian manifolds are defined. Suppose   denotes a 

parametric surface on    and     denotes the Riemannian 

metric that encodes the geometrical properties of the manifold. 

In a local system of coordinates    on  , the components of 

the gradient are given by 

 



 
Fig. 2. Projection of a 3D point onto the image plane in the sphere camera 

model. 

       

   


where      is the inverse of    . 

A similar reasoning is used in [16] and [19] to obtain the 

Laplace-Beltrami operator, which is the second order 

differential operator defined on   and used for scale space 

representation for SIFT. In this paper, we are working on the 

first derivatives. Let us briefly go over the para-catadioptric 

case. 

Consider the unitary sphere    with radius    (Fig. 3a). A 

point on    is represented in Cartesian and polar coordinates 

as 

                                

The Euclidean line element in Cartesian coordinates,   , can 

be expressed in polar coordinates as 

                                 

The stereographic projection of the sphere model sends a point 

on the sphere (     to a point in polar coordinates (     in the 

image plane (plane   ), for which   remains the same and 

   tan        in a para-catadioptric system (Fig. 3b). 

Using the identities,         ,    tan        the line 

element reads 

 

Fig. 3. (a) A 3D point on the sphere is represented by two angles (    . (b) 

Consider the unitary sphere (   ). Image plane is placed at the south pole 

(   ). A 3D point is first projected onto the sphere surface and then 

projected onto the image plane, where in this case   ξ   . 

 

     
  

          
         

giving the Riemannian inverse metric 

    
          

  


We refer the reader to [16] and [18] for a detailed derivation 

of catadioptric Reimannian metric. With this metric, we can 

compute the differential operators on the sphere using the 

pixels in the omnidirectional images. In particular, norm of the 

gradient reads 

        
          

  
       

We see that the para-catadioptric gradients are just the scaled 

versions of the gradients in Euclidean domain. Therefore, we 

simply multiply our gradients with metric    . 

At the center of the omnidirectional image,            , 

Reimannian and Euclidean gradients are the same. At an 

image location when         , which corresponds to a 3D 

point at the same horizontal level with the sphere center 

(mirror focal point), the Reimannian metric is equal to 4. 

Therefore the gradients are magnified as we move from the 

center to the periphery of the omnidirectional image. This 

metric is extended to all central catadioptric systems by Puig 

et al. [19]. 

3.2. Conversion of Gradients for Omnidirectional Sliding 

Window 

After the image gradients are obtained with Reimannian 

metric, we convert the gradient orientations to form an 

omnidirectional (non-rectangular) sliding window. A 

rectangular object in a perspective image is warped in the 

omnidirectional image, therefore the gradients in the sliding 

window should be computed as if a perspective camera is 

looking from the same viewpoint. 

The reader should note that we train our model for human 

detection using INRIA perspective image dataset as described 

in [2], i.e. we do not train an omnidirectional HOG model. 

Since the shape of the non-rectangular sliding window varies 

according to the location in the omnidirectional image, it is not 

plausible to train many omnidirectional HOG models. The 

modifications we made for HOG computation in 

omnidirectional sliding window enables us to compare it with 

the perspective camera HOG model. Fig. 4a shows a half of a 

synthetic para-catadioptric omnidirectional image (400x400 

pixels) where the walls of a room are covered with rectangular 

black and white tiles. Conventional HOG result of the marked 

region (128x196 pixels) in this image is given in Fig. 4b 

where gradient orientations are in accordance with the image. 

However, since these are vertical and horizontal edges in real 

world, we need to obtain vertical and horizontal gradients. Fig. 

4d shows converted gradients for the region marked in Fig. 4c, 
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Fig. 4. Description of how the gradients are modified for an omnidirectional 

sliding window. Result in (b) is the regular HOG computed for the region 

marked with dashed lines in (a). Modified HOG computation gives the result 

in (d) for the region marked in (c). Vertical and horizontal edges in real world 
produce vertical and horizontal gradients in the modified version. 

which is an example of the proposed HOG computation. 

Since the Cartesian coordinates in the detection window (Fig. 

4d) corresponds to a nonlinear distribution of pixels in the 

image (Fig. 4c), we employ bilinear interpolation with 

backward mapping both for gradient orientations and gradient 

magnitudes. 

4. EXPERIMENTS 

4.1. Evaluation of the Modified HOG Using SVM Scores 

Let us first compare the results of the proposed HOG 

computation and the regular HOG computation on the 

omnidirectional images. Since the computed HOG features are 

given to an SVM trained with person image dataset, we aim to 

obtain higher SVM scores with the proposed omnidirectional 

HOG computation. 

We artificially created 210 omnidirectional images containing 

humans. While creating this set, we followed an approach 

similar to [15], where images in INRIA person dataset are 

projected to omnidirectional images using certain projection 

angle and distance parameters. Fig. 5 shows an example 

omnidirectional image, where the regular HOG window 

(rectangular, 128x64 pixels) and the proposed omnidirectional 

HOG window (non-rectangular) are shown. The HOG features 

computed with the two window types are compared with their 

resultant SVM scores. Since the locations of projections in 

these images are known, no search is needed for this 

experiment. However, vertical position of the window affects 

the result. For both approaches, we chose the position that 

gives the highest mean SVM score. Table 1 summarizes the 

result of the comparison, where we see that the mean score for 

the proposed approach is higher than that of regular HOG 

window. 

4.2. Experiments with Real Images 

In this subsection, we present the results for a set of images 

TABLE I.  COMPARISON OF THE REGULAR AND PROPOSED HOG 

WINDOW BY THEIR SVM SCORES 

 Mean  

SVM Score 

Minimum 

SVM Score 

Maximum 

SVM Score 

Regular HOG window 1.69 -1.01 3.21 

Proposed HOG window 1.93 -0.42 3.64 

 

 

Fig. 5. Depiction of the regular HOG window (green rectangle) and the 

proposed window (red doughnut slice) on an omnidirectional image 
artificially created by projecting a perspective image from INRIA person 

dataset. 

taken with our catadioptric omnidirectional camera. We 

compared the proposed HOG computation not only with the 

regular HOG window, but also with the approach that first 

converts the omnidirectional image to a panoramic image and 

then performs HOG computation. Although it was explained 

in Section 2 that working on panoramic images is not a 

theoretically correct approach, we wanted to test its 

performance. Fig. 6 shows the results for one of the images in 

the set. SVM scores greater than 1, after non-maximum 

suppression, superimposed on the images with the proposed 

HOG window, the regular HOG window on omnidirectional 

image and HOG after panoramic conversion.  For the humans 

in the scene, the average SVM scores for the proposed HOG,  

   
                          (a)                                                 (b) 

 
      (c) 

Fig. 6. Human detection results on an omnidirectional image with SVM 

scores (upper left corners) greater than 1. (a) Proposed sliding windows. (b) 

Regular (rectangular) sliding and rotating windows. (c) Regular sliding 

windows on panoramic image. 



 
Fig. 7. Precision-Recall curves to compare the proposed HOG computation, 

the regular HOG and HOG after panoramic conversion. The data points in this 

curve correspond to the varying threshold values for the SVM score, which 
change from 0 to 5. 

the regular HOG and HOG on panoramic image approaches 

are 2.94, 2.11 and 2.41 respectively.   

To evaluate the overall performance of these three approaches, 

we plot precision-recall curves for the whole dataset which 

consists of 20 real images taken in different scenes including 

indoor and outdoor environments (Fig. 7). The aim of these 

curves is to show the two performance metrics together: 

Precision (#True positives / #Predicted positives) and Recall 

(#True positives / #Actual positives). The larger the area under 

the curve, the better the performance of the algorithm. As the 

threshold increases, all approaches reach Precision=1. One can 

observe that the performance of the proposed HOG 

computation is better than the others up to a threshold value of 

4.0. At higher threshold values our method loses its advantage. 

However, since the recall comes below 0.5 for those values, it 

is not plausible to use them in practical systems.  

A detection window is considered to be a True-positive if it 

overlaps an annotation by 50%, where the overlap is computed 

as 

  
                                   

                                   


For a fair comparison, the annotations are separately prepared 

for the mentioned three methods. Annotations of the proposed 

HOG approach (e.g. Fig. 6a) are doughnut slices, annotations 

of the regular HOG approach are rectangles rotating around 

the omnidirectional image center. Finally, annotations of the 

HOG on panoramic image approach are upright rectangles. 

5. CONCLUSION 

We aimed to perform human detection directly on the 

omnidirectional images. As a base, we took the HOG+SVM 

approach which is one of the popular human detection 

methods. After describing how the feature extraction step of 

the conventional method should be modified, we performed 

experiments to compare the proposed method with the regular 

HOG computation in omnidirectional and in panoramic 

images.  Results of the experiments indicate a performance 

increase for the proposed approach.  

In the near future, we are planning to prepare a larger set of 

real omnidirectional images, and perform tests using that set.  
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