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ABSTRACT

A DIRECT APPROACH FOR OBJECT DETECTION WITH OMNIDIRECTIONAL
CAMERAS

In this thesis, an object detection system based on omnidirectional camera which

has the advantages of detecting a large view-field is introduced. Initially, the traditional

camera approach that uses sliding windows and Histogram of Gradients (HOG) features is

adopted. Later on, how the feature extraction step of the conventional approach should be

modified is described. The aim is an efficient and mathematically correct use of HOG fea-

tures in omnidirectional images. Main steps are conversion of gradient orientations to com-

pose an omnidirectional sliding window and modification of gradient magnitudes by means

of Riemannian metric. Owing to the proposed methods, object detection process can be per-

formed on the omnidirectional images without converting them to panoramic or perspective

image. Experiments that are conducted with both synthetic and real images compare the pro-

posed approach with regular (unmodified) HOG computation on both omnidirectional and

panoramic images. Results show that the performance of detection has been improved by

using the proposed method.
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ÖZET

TÜMYÖNLÜ KAMERALAR İLE NESNE TESPİTİ İÇİN DOĞRUDAN BİR
YAKLAŞIM

Bu tez çalışmasında, geniş görüş alanı avantajına sahip olan tümyönlü kameralar

ile nesne tespiti yapan bir sistem tanıtılmıştır. Öncelikle, geleneksel kameralar için önerilen

yaklaşım ile, perspektif imgeler üzerinde kayan pencereler yöntemi kullanılarak HOG öznite-

liklerinin çıkarılması işlemi gerçekleştirilmiştir. Daha sonra, hali hazırda uygulanan gelenek-

sel öznitelik çıkarım adımlarının bu amaç doğrultusunda nasıl uyarlanacağı tarif edilmiştir.

Buradaki amaç, HOG özniteliklerini verimli ve matematiksel olarak doğru bir şekilde tümyön-

lü kameralar üzerinde uygulayabilmektir. Uygulanan temel değişikliklerden birincisi, grad-

yan (yön türevi) oryantasyonlarının tümyönlü imgelerde kayan pencereleri elde edecek şekil-

de uyarlanmasıdır. Uygulanan ikinci önemli değişiklik ise, gradyan şiddetinin Riemannian

metriği ile yeniden uyarlanmasıdır. Adapte edilen bu değişiklikler sayesinde, tümyönlü

imgelerin perspektif yada panoramik imgelere çevrilmesine ihtiyaç duyulmadan, direk olarak

nesne tespiti yapılması mümkün kılınmıştır. Deney kısmında oluşturulan sentetik ve gerçek

imgeler vasıtasıyla, önerilen tespit sistemi ile normal (değişikliğe uğramamış) HOG hesapla-

ma yönteminin tümyönlü ve panoramik imgeler üzerinde karşılaştırması yapılmıştır. Deney-

sel sonuçlarla yapılan analiz, önerilen metot ile uygulanan nesne tespiti işleminin kaydettiği

performans artışını gözler önüne sermiştir.
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CHAPTER 1

INTRODUCTION

Our world has a life cycle that is human oriented. Human being is in the center of

everything, on the other hand the objects composed our surrounding have a direct or indirect

impact on our lifes. From existence of mankind for obtaining benefit to itself, human needs

to have continuous monitoring. We always observe animate and inanimate objects to gather

advantage against the life struggle.

The reason what made people observe was mainly a sense of wonder against un-

known. In primitive history we coped with the surveillance problem by man power. With

time, numerous inventions had been occurred and variety of equipment were developed for

this purpose. One of the most known inventors Galileo Galilei who lived in 16th century and

played a major role in the scientific revolution. His most known achievement is invention of

the telescope, thus Galileo has been called the ”father of modern observational astronomy”.

Over the centuries, our changing lifestyle has shaped the living area; environment in which

we interact has constantly changed. Today mostly we are looking for extracting useful points

from ongoing and repetitive daily cases rather than discovering the unknown. From that time

to present, the aim of gathering more meaningful information efficiently incites human be-

ings search new observation systems. In this way our observation problem converts into a

detection problem with the contribution of computing power. For this reason, research top-

ics such as object detection and scene understanding have emerged from computer vision

research area.

In this study our starting point is a traffic scene with its most important components

like human (pedestrian) and cars. The better organized traffic provides us the more confident

living area. Also other cases like traffic security, autonomous systems for residence or car,

car assistance system etc. are the some of the fields that make use of object detection. Various

types of approaches have been studied, each of them tried to propose more robust systems.

Some of them studied on different camera types, some produced a new image description

method or classification method and some of them combined known methods to obtain better

result. Different type of challenges makes object detection one of the most attractive field of

studies.
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1.1. What is Object Detection

Object detection is a challenging computer vision problem that copes with identi-

fying a specific class of objects from the real world environment. The objects of interest,

such as bicycle, pedestrian, vehicles, buildings are easily detected by human vision system.

However, the same process has turned into a complicated process for machines. Different

approaches that were previously proposed for human and vehicle detection are examined

in Chapter 2 in detail. Although they have provided dissimilar touch for the same objective,

they have discussed on the same basic aspects of object detection. We can represent the main

components of object detection problem, and then discuss their role in detection systems:

1. Image descriptors or feature vectors: In a digital image, every object class has its own

special features that identifies the visual character of that object. Despite, most of these

features are based on gradients, edges or colors, many different types of feature were

introduced for detecting objects. Some of them gain the low level attributes from a

distinguishable small area of a region which is named as local features, on the other

hand global features are also available. Moreover, some features are easy to compute

while others are very difficult.

2. Detection framework that is constructed on these features: The whole region in the

image must be controlled by an efficient detection infrastructure. This scanning op-

eration is integrated with feature extraction step because they work simultaneously.

Besides, shape of the used detector in detection method is generally depends on de-

scriptor formation. This is one of the important factors that effects the rapidness of

detection method directly. For instance, sliding window is one of the most preferred

detectors in object detection.

3. Classifier for learning the interested object and giving object/non-object decision:

Although there are verification methods like feature indexing or feature matching,

researchers generally tend to verify or reject the candidate object by classification

methods. There are several methods subject to classification: Some of them have a

probabilistic touch like Bayesian classifier and some others have neural net-based ap-

proaches. In spite of this diversity, they all give object / non-object decision according

to interested object model. This object model is generated by the learning process that

provides important attributes or features of objects.
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1.2. Thesis’ Aim and Contributions

On the basis of the general object detection context, especially detection of human

and car object classes is subject to this thesis. In spite of wide viewing angle (360 degree) ad-

vantage of omnidirectional cameras, studies related with the object detection generally have

been carried out by normal viewing angle cameras. The algorithms proposed for standard

cameras, also called perspective cameras, can not be used directly on omnidirectional im-

ages, because descriptor extraction and classification methods are developed and optimized

for perspective cameras. It is necessary to conduct specific studies for omnidirectional cam-

era and determine the appropriate methods and algorithms. There are studies reporting an

increase in performance which modified some image processing techniques for omnidirec-

tional camera. Also feature extraction methods that are used for classifying the object has

the same potential. Despite this potential, none of the encountered studies handled the om-

nidirectional camera structure with a feature extraction method for a direct classification

on it. Additionally some of these works just used omnidirectional cameras for the sake of

determining the position of moving objects.

In this thesis, the aim is to propose a direct approach to perform object detection with

catadioptric omnidirectional cameras; if a type of mirror is integrated with a conventional

camera, it is called as a catadioptric omnidirectional camera. That is, our method does not

require the conversion of the omnidirectional images to panoramic or perspective images.

Apart from the advantage of eliminating the image conversion step, the detection perfor-

mance of the proposed approach is superior as will be given in experiments section. Under

the light of literature review, the proposed method is the first that mathematically modifies

an object detection approach to be effectively used for omnidirectional cameras.

In our study, HOG is employed for the feature extraction step. And then, the binary

classifier that carries out the object/non-object determination is created by linear Support

Vector Machine (SVM) based learning process. Also, the sliding window detection frame-

work which relies on HOG descriptor formation is used for scanning the whole image in

multiple scales. Consequently, we proposed modifications for the HOG + SVM object de-

tection method for an efficient use with omnidirectional cameras.

Although we concentrate on HOG features in this study because of its adaptability

to diverse type of classes, other features based on image derivatives can be modified in the

similar manner. Also human (pedestrian) and vehicle (car) selected as a detection target

because these two object classes are primary actors of traffic scenes and traffic has a direct
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impact on the social welfare. A second contribution is that we construct an omnidirectional

image dataset with annotated humans and cars and it can be downloaded from our website
1. We believe this dataset will be useful to the community for omnidirectional vision based

object detection research.

1.3. Organization of the Thesis

In Chapter 2, different approaches on object detection are examined individually

within the scope of human detection, vehicle detection and object detection on traffic ap-

plications including omnidirectional cameras.

Background related to the proposed work is given in Chapter 3. Firstly, camera types

with their specifications are introduced from fisheye lenses to catadioptric omnidirectional

cameras in the context of catching wide field of view area. Then, we describe HOG + SVM

[12] infrastructure for the purpose of the object detection with their main components. Also

some implementation detail is explained.

In Chapter 4, initially it is explained why our approach is theoretically correct. After

that, we adopt HOG+SVM detection model and explain how we modify the HOG feature

extraction step for catadioptric omnidirectional cameras.

Our experiments and implementation details, given in Chapter 5 were held for hu-

man and car detection tasks. Their results indicate that the adaptation of HOG features

improves the performance when compared to unmodified HOG computation. We also com-

pare our method with object detection on panoramic images converted from omnidirectional

ones and conclude that the proposed method is superior for objects with a width / height

ratio < 2.5. Additionally as explained in this chapter, we also modify the post processing

implementations according to omnidirectional rotating window for a fair comparison.

Future work and our conclusions are given in Chapter 6 and Chapter 7 respectively.

Furthermore some algorithms used in this thesis can be found in Appendix as MATLAB

code parts.

1http://cvrg.iyte.edu.tr/
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CHAPTER 2

REVIEW OF LITERATURE

In the literature there are different approaches on object detection. Detection of spe-

cific objects with cameras is a chief task for many application areas such as autonomous

driving, traffic analysis, safety and visual surveillance. Considerable improvements in object

detection have been recorded in the last decade both in terms of effectiveness and processing

time. Majority of this research has concerned human and car detection. Most popular detec-

tion approaches include feature extraction + classification technique. This technique diver-

sify according to used feature(gradient, color, edge, corner etc) and classification (matching,

SVM, boosting etc.) method. For detailed description of these techniques referenced studies

are recommended in the following paragraphs.

The organization of the literature review is as follows. First a general review on object

detection is given with an emphasis on human / pedestrian detection. Then, the studies on

vehicle detection are given in the context of traffic applications. Lastly, the research including

omnidirectional cameras is reviewed.

2.1. Object Detection

The method used generally has two basic stages, first one is extraction of image at-

tributes (feature) and identifiers (descriptor) and second step is the implementation of classi-

fication method. A major group in these studies uses the sliding window approach in which

the detection task is performed via a moving and gradually growing search window. A

significant performance improvement was obtained with this approach by employing HOG

features. Firstly Dalal and Triggs [11] proposed to use HOG for the feature extraction step

and they used SVM for the classification step. After this approach was proposed in 2005,

this technique was enhanced with part based models. For instance, Felzenswalb et al. [18]

proposed a method using parts of the object which are spring-like connected to each other

and can move independently. Alternative improving was using pyramid HOG features and

Intersection Kernel SVM [39].

Besides, Scale Invariant Feature Transform (SIFT) is extensively used image descrip-
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tor which similarly carries gradient direction and magnitude information like HOG [38]. In-

stead of using smoothed weighted histograms of SIFT, Ke et al. [32] applied Principal Com-

ponents Analysis (PCA) to the normalized gradient patch. Their experiments demonstrate

that the PCA based local descriptors are more distinctive, more robust to image deformations,

and more compact than the standard SIFT representation. Also, detection methods that based

on wavelet transformation or based on attributes that are obtained from the detected edges

are still used. Ferrari et al. [19] have introduced a local contour features and their applica-

tion to object detection. These features are able to cover pure portions of an object boundary,

without including nearby spurious edges. Moreover, they can form a wide variety of local

shape structures, combine informativeness and repeatability in object recognition. Regard-

ing the classification step, developed versions of SVM (e.g. Intersection Kernel SVM [39])

and Boosting methods [49] are comparatively successful; additionally, nearest neighbour and

many different classification methods such as artificial neural networks are used in different

studies.

A different model in which a histogram is obtained by grouping the extracted features

from the image and operated classification is called ’Bag-of-Words’ [17, 46]. Although a

lot of changes were suggested on this method, because of containing no attribute location

information this approach is mostly suitable for general image categorization and it does not

seem suitable for human or vehicle detection. Another approach [36] which can be defined

as Shape-based object detection and image segmentation requires the pixel level grouping

so it is usually not preferred in fastness based traffic scenario. Still another segmentation

based object detection studies are available (Gould et al. [23], Shotton et al. [45]). Edge

based features [53] and shapelets [42] are examples of other features that can be used with

sliding window approach. More recently, it was shown that using combinations of features

outperforms the approaches that use a single type of feature [51]. For a detailed summary

and comparison of methods, specific to pedestrian detection, we refer readers to [15].

2.2. Vehicle Detection

Most of the studies explained above focus on the human detection in an exterior or

traffic scene, on the other hand detection of vehicle is subject to many remarkable studies.

Main approaches related with vehicle in the literature concern detection of a vehicle, vehicle

tracking and classification of vehicle. Gupte et al. [24] modelled the vehicle types as rectan-
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gles and took advantage of attributes such as width, length and speed, after on they applied

a hierarchical classification. Kumar et al. [34] differentiate vehicle by means of background

extraction method using stationary camera and they extracted attributes like vehicle size,

speed, shape, and position. They classified tractors, trucks, cars, motorcycles and pedestri-

ans classes with Bayesian network based classification method under the light of obtained

properties. Morris et al. [40] increased efficiency of detection by adding tracking process

to classification system and separated vehicles into three classes (sedan, van, truck). In this

study, for conversion of attributes PCA and Linear Discriminant Analysis (LDA) had been

tried, classification step is made by weighted nearest K neighbour method. Unlike the others,

Kanhere and Birchfield [29]’s work is an useful example of how to use the 3D coordinates

of the point (of the height from the road) for classification. Also this research provides some

tips in 3D scene for increasing the success of developed methods.

2.3. Detection with Omnidirectional Cameras

With its enlarged view advantage, fewer omnidirectional cameras which provide 360

degree horizontal field of view in a single image may take the place of many perspective

cameras. However, so far omnidirectional cameras have not been widely used in object

detection research area and also in traffic applications like pedestrian and vehicle detection.

The works explained in the following parts address omnidirectional cameras as a subject.

In a study on object detection with omnidirectional cameras [52], a mobile robot is

given the images of several objects in the environment and it is asked to recognize these

objects. Actually, the omnidirectional image is warped into a cylindrical panoramic image

before matching with the images of the objects using SIFT. In another study [2], objects in

an indoor office environment (tables, chairs, etc) are classified with a generative model. By

these two last researches, the system is first trained with annotated images. Then, given some

other images from the same environment, system tries to detect object of certain classes.

SIFT features are employed without any modification for omnidirectional cameras.

On the other hand, extraction of scale space on SIFT and conversion of finding at-

tributes into convenient form for the geometry of the omnidirectional image are applied by

[41]. Furthermore he examines their method with the version in which SIFT performed on

omnidirectional images without any modification and they show their method’s superiority.

Also the success of the modified SIFT on omnidirectional images against to other descriptors

7



is shown in Arican et al. [3]’ s study. Like it is mentioned in previous research, modification

of feature extraction method have been carried out for omnidirectional camera however there

have not been any study which use this conversion for object detection and classification for

HOG+SVM approach.

Gamallo et al. [21] have been presented A SLAM algorithm, based on FastSLAM,

using omnivision. Their system uses an omnidirectional camera, which is specially inter-

esting in indoor environments with a low density of landmarks. And they have performed

vision-based Simultaneous Localization and Mapping algorithm by the several landmarks

usually detected in each image. This algorithm can be useful for extraction of object features

in object detection. In another study, Gandhi and Trivedi [20] discussed on the develop-

ment of a mobile platform-based vehicle classification and logging system. They proposed

a motion-based vehicle detection using an omnidirectional camera on top of a vehicle, also

histogram-of-gradients (HOG) based classification were discussed in this study. It was seen

that the HOG approach was more appropriate for confirming the presence of vehicle and

discrimination at coarse level such as between cars and other vehicles.

In their study, Cheng et al. [8] assume an omnidirectional camera is mounted on a

moving platform, which travels with a planar motion.They utilizes a hyperboloid-type omni-

directional camera to expand fields of view by mimicking compound eye of insects. Herceg

et al. [26] have analysed an optical flow vector information from the pyramidal Lucas-

Kanade algorithm applied to an omnidirectional image. Their experiments showed that the

algorithm is able to detect a moving object in an adverse scenario under natural and artificial

lighting. In another research, Demiroz et al. [14] have described the first indoor multi-

omnidirectional camera dataset for activity recognition and provided benchmark algorithms

for tracking human. It is named as BOMNI dataset collected with two omnidirectional cam-

eras simultaneously.

When we analyze the use of omnidirectional cameras in traffic; Cheng and Trivedi

[9] worked on a system which detects the line on the roadway by an omnidirectional camera

placed on the roof of the car and simultaneously observes the driver. Layerl et al. [35] did a

similar work and managed to gather higher resolution image for surveillance of driver’s face

by the proposed different mirror system. Also, there are works for autonomous driving to

find vehicle ways by itself or surpass a trouble in roadway [47]. In pursuit of autonomous

driving, shadow in scenes is deleted and background is distinguished in Scharfenberger et al.

[43]’s approach.

Various studies were encountered on non-traffic cases in which omnidirectional and
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Pan Tilt Zoom (PTZ) cameras are used as a combined system. In one of these studies,

Scotti et al. [44] made moving object detection on omnidirectional cameras. By means of

making calibration between omnidirectional and PTZ cameras they achieved to direct PTZ

camera towards moving objects and made possible to take higher-resolution video stream.

In a similar manner, Chen et al. [7] developed a PTZ camera system directed by coming data

from omnidirectional camera. Differently, In case of more than one object enter the area

of omnidirectional camera at a moment, they proposed the ’hopping from a target to target’

algorithm for following the each object in a given time.

Iraqui et al. [27] integrated a mirrored omnidirectional sensor with PTZ camera

and by this generated camera system they applied a human face detection in two stages.

Firstly, authors use Haar features to perform face detection with catadioptric omnidirectional

cameras. Instead of modifying the feature extraction step, they convert the omnidirectional

images into panoramic images and directly use the conventional (perspective) camera tech-

nique. Then PTZ camera is directed to identified zone and performed the same traditional

detection method elaborately. In a similar manner, panoramic images are used in [30] for

human detection and in [31] for car detection.

A human tracking method for omnidirectional cameras is proposed in the study of

Tang et al. [48]. As a part of the proposed algorithm, HOG features are computed. However,

a rectangular rotating and sliding window is used with no mathematical modification for the

omnidirectional camera. A study on vehicle detection and classification uses omnidirectional

and PTZ cameras in conjunction [33]. They use HOG + SVM approach for vehicle detection

in the images of PTZ camera, looking direction of which is determined by the omnidirec-

tional camera. However omnidirectional camera is just used to detect the movement and to

determine the size of the moving objects.

In other studies related with this thesis, omnidirectional camera was used as an as-

sistant element near other conventional camera types. In this work an effective and direct

solution is targeted by modification of HOG descriptor for omnidirectional cameras, further-

more, a supervised classification method SVM and sliding window localization method are

applied for detection step. Also in our previous work [10], HOG + SVM detection model is

applied on omnidirectional image, which included experiments with a limited image dataset

and considered only human detection.
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CHAPTER 3

BACKGROUND

3.1. Camera Types

Many different image acquisition technologies have been employed in computer vi-

sion and other areas, all of them aimed to provide a more informative view. Gathering more

comprehensive image forces invitation of various camera types.

3.1.1. Fixed Cameras with Standard Viewing Angle

We encounter with this fixed camera type in our daily life frequently. It is generally

located to observe a certain viewing angle. It is used to capture perspective (normal viewing

angle) images (Fig. 3.1) and it cannot handle the wide field of view scenario that we focus

on. In other words perspective cameras are able to surveillance just the objects entering into

its view angle from a single viewpoint. So, narrow viewing angle of perspective cameras

has limited applications. The way of observing more than one object that belongs to distant

views is locating many cameras at strategic points, which makes the solution an expensive

one.

Pan Tilt Zoom (PTZ) Cameras : Instead of using more than one camera, a PTZ cam-

era will be used with its capability of remote control on directional moving and zooming. Pan

means horizontal moving angle, tilt denotes the vertical moving angle and zoom expresses

the capability of zooming in to target. PTZ controls are used with professional video cam-

eras in television studios and referred to as camera robotics. These systems can be remotely

controlled by automation systems. PTZ cameras may resolve some shortcomings, a higher

resolution may be accessed by zooming skill and can follow objects by rotating tool, taking

images from different angles can gather more information for detection. However PTZ cam-

eras can not view outside of the focusing area. Therefore it is not adequate to observe the

whole scene at a given time.
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Figure 3.1. (a) A sample perspective(normal view angle) image obtained by PTZ cam-

era. (b) PTZ camera with its movable part.

3.1.2. Wide Field View Cameras

Disadvantage of narrow field view camera and how wide angle cameras cope with

this problem are depicted in Fig.3.2. In this sample scenario there is a crossroad which

has a traffic flow with its four intersecting roads. Also there is a building overlooking to

this intersection area. The fixed camera and wide field of view camera are placed at the

corner top of the building, numbered as 1 and 2 in the figure respectively. We can easily

see that the fixed camera has a capability of observing unchanging side with its tight angle,

whereas the omnidirectional camera located with same place is able to detect all objects

coming from each four ways at a moment. In this scenario, performing the task of the

wide angle camera with normal viewing angle cameras can be possible by using four fixed

cameras facing different directions. This approach will be costly and more complicated to

synchronize with the each of four cameras at the same time.

Drawback of fixed camera drive us developing cameras whose observation field cover

the whole scene for an extensive object detection. Within the scope of wide field context,

omnidirectional imaging systems came out. The main advantage of these systems over a

system with a regular lens is the large field of view, which further reduces the number of

images necessary to represent a location. The large field of view also makes the system robust

to small changes in the environment. Most commonly used image acquisition technologies

in omnidirectional imaging are fisheye lenses, panoramic systems and catadioptric systems.

A brief description of these camera systems is given in the following paragraphs.
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Figure 3.2. A sample scenario comparing the view field of fixed and omnidirectional

camera. Both camera are placed corner top of the building which over-

looking to crossroad. Rectangle one numbered as 1 is the fixed camera,

omnidirectional camera is indicated by circled shape that is numbered as

2. Dashed lines represent the point of view of the each camera.

1. Fisheye Lenses: The concept of fisheye view and lens dates back to more than a cen-

tury. The term fisheye was coined in 1906 by American physicist and inventor Robert

W. Wood based on how a fish would see an ultra-wide hemispherical view from be-

neath the water Fisheye lenses achieve extremely wide angles of view which gives

images a characteristic convex non-rectilinear appearance. With a special kind of lens

mounted on a standard camera, called ’fisheye lens’ (Fig. 3.3), it is possible to obtain

a field of view up to about 180-degrees both in horizontal and vertical directions. The

widest fisheye lens ever produced featured a 220-degrees field of view. Although im-

ages acquired by fisheye lenses may prove to be good enough for some visualization

applications, the distortion compensation issue has not been solved yet, and the high

unit-cost is a major drawback for its wide-spread applications.

2. Panoramic Systems: There are many techniques to acquire panoramic images. Panora-

mic photography is a technique of photography, using specialized equipment or soft-

ware, that captures images with elongated fields of view. It is sometimes known as

wide format photography. This generally means it has an aspect ratio of 2:1 or larger,

the image being at least twice as wide as it is high. The resulting images take the form

of a wide strip. Some panoramic images have aspect ratios of 4:1 and sometimes 10:1,
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Figure 3.3. (a) A fisheye lens that can capture an 185 degree angle image and (b) a

sample omnidirectional image taken by fisheye lens [4].

covering fields of view of up to 360 degrees. Both the aspect ratio and coverage of field

are important factors in defining a true panoramic image. Panoramic image sample can

be found in Fig. 3.4b that is converted from fixed one by a geometric conversion.

Primitive version of panoramic cameras is named as slit imaging systems. Slit imaging

has been one of the first techniques to obtain panoramic images by a physical camera.

Various prototypes existed already in the nineteenth century, usually based on a mov-

ing slit-shaped aperture. Most of these systems either use a 2D camera or a 1D camera

(also called linear camera or pushbroom camera) which scans a scene while moving,

generating a panoramic image. For instance, we can acquire panoramas through ro-

tating a fixed camera around a horizontal axis, then by glueing together pixel columns

from each image, and used them for map building or 3D measurement. Furthermore,

there are new generation cameras that directly serve panoramic images without any

moving. Also some more recent digital panoramic imaging cameras 1 (Fig. 3.4a) are

mainly developed for robotic and computer vision; similar systems were also devel-

oped for photogrammetric applications.

1http://ww2.ptgrey.com/spherical-vision
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Figure 3.4. Obtaining a panoramic image sample (b) which is captured by digital

panoramic camera (a)

3. Catadioptric Systems: The third way providing us the omnidirectional vision is cata-

dioptric system. In the literature, different types of catadioptric sensors can be found.

In particular, what characterises each catadioptric sensor is the shape of the adopted

mirror (parabolic, hyperbolic, conical or ellipsoidal). The most popular catadioptric

cameras are para-catadioptric and hypercatadioptric ones, based on paraboloidal and

hyperboloidal mirrors. Like the one used in this thesis, if a convex parabolic mirror

is placed in front of a conventional camera for this purpose, then the imaging system

is called a para-catadioptric omnidirectional camera (Fig. 3.5). Besides, the viewing

field can be enlarged by adding different types of mirrors. This kind of special com-

pact system is used for tracking more than one target at a same time. For instance, in

their study Layerle et al. [35] proposed a compact catadioptric sensor that tracks the

driver face and road line simultaneously.

Catadioptric cameras provide 360 degree horizontal field of view in a single image

(vertical field of view varies). With its enlarged view advantage, fewer omnidirectional

cameras may substitute many fixed cameras; also it achieves a field of view possibly
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even larger than with a fisheye lens. However, so far omnidirectional cameras have not

been widely used in object detection research area and also in traffic applications like

pedestrian and vehicle detection.

(a) (b)

Figure 3.5. (a) A convex parabolic mirror apparatus is placed in front of a conventional

camera to obtain a catadioptric omnidirectional camera. (b) An example

image obtained by such a camera [4].

Omnidirectional & PTZ Hybrid Camera Systems: From fisheye lenses to catadioptric

omnidirectional vision system, their ability to catching wide field of area increases depend

of their technology. However, due to their low and non-uniform resolution, omnidirectional

cameras are only able to provide moderate accuracy in both motion/target detection and

tracking.On the other hand PTZ cameras stand out with their focusing skill on their target so

they can capture an image in high resolution. Different advantages of the two camera types

create a dilemma between viewing angle and resolution. To overcome this problem many

researchers use both cameras in a combined system.

The common usage of PTZ + Omnidirectional system is implemented by a physically

separated PTZ camera that put in together with an omnidirectional camera. In a widely used,

moving objects are detected simultaneously by calibrating this combined system [7, 40, 44],

the geometry relationship between the omnidirectional and PTZ cameras can be formulated.

In this communicated system, PTZ camera is generally directed by an input value that is

transmitted from an omnidirectional camera. A sample scenario can be demonstrated in Fig.

3.2. If there was a PTZ camera instead of the fixed (numbered as 1) one in this figure, it

might easily scan the range from road 1 to road 2. Therefore, the dilemma between viewing

angle and resolution can be solved with this integration.
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Consequently, steering the PTZ camera to the all moving targets is not a wise action.

The more effective solution for a rapid multi-target detection is performing pre-classification

on omnidirectional camera. We must emphasize that, this is the motivation to our work for

detecting certain objects on omnidirectional images.

3.2. Object Detection with HOG + SVM

This chapter describes the how HOG and SVM can be integrated for the purpose of

the object detection. HOG feature set and this combined approach are firstly proposed by

Dalal and Triggs [11]. The entire object detection flowchart, based on HOG + SVM model

can be composed like in Fig. 3.6. The object detection process is divided into three core

phases, including:

1. The feature extraction phase corresponds to encoding the regions of image effectively.

In other words representation of the whole image is generated by collecting HOGs

over detection window from all locations of image.

2. The classification phase gives decision whether incoming window is interested object

or not. This phase also includes the learning sub-phase to shape the object class model.

3. Detecting with window classifier result in multiple overlapping detections. Fusion of

multiple detections is provided with suppressing the less meaningful ones in this phase.

Figure 3.6. The entire object detection steps based on HOG+SVM model.
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To summarize the flow briefly, the sliding window detector scans the image in all

possible scales, so by this fixed window we can reach all local parts of the image. These

local parts are encoded in context of HOG feature and all this fixed windows turn into fea-

ture vectors. These feature vectors are also used in supervised learning phase, training set

serves the necessary information of object classes. After creation of interested object class

pattern named as model, linear SVM evaluates the feature vector which is in the same format

with training feature but extracted from the test images. Although the evaluated results that

belongs the local parts are thresholded, this verification still results in multiple overlapping

detections. Later on, these overlapping detections called as bounding boxes are fused into

most meaningful one. Final bounding boxes denote the object instances (car or human) in

explored image.

Following sections provide profound explanation of these chief phases mentioned

above with their parametric details.

3.2.1. HOG Based Descriptor

With the scope of object detection, edge orientation histogram has been widely used

as an image identifier. Also the concept of dense and local histograms of oriented gradients

became popular as a descriptor. This section gives implementation details of HOG feature

extraction chain. Main objective of such method is generating characteristics in a local part

of an image by overlapping normalized histograms of gradient orientation. These histograms

reflect the appearance and shape of image regions.

Basically, types of HOG descriptor are proposed according to their pattern of cell

grids. If a rectangular cell is used, it is called as Rectangular HOG (R-HOG), alternatively

it can be applied as Circular HOG (C-HOG). The only difference point between these two

descriptor is; one captures the local shape information in rectangular pattern, the other rep-

resents the same local region in circular pattern. Both descriptor types have the same funda-

mental computation steps.

R-HOG descriptor is used as the default descriptor of all work in this thesis. Since

we prefer a rectangular shape sliding window detector for detection phase, using this shaped

construction makes our descriptor generation process less time consuming. Roughly, encod-

ing image gradients orientations in histograms can be achieved by the following sequential

operations: First of all, we compute gradient of the image, and then local gradients are

17



binned according to their orientation, weighted by their magnitude. These accumulated bins

construct histogram of each cell. After desired number of cells are grouped and compose

the blocks, overlapping blocks are normalized. Finally, compiles the blocks and reach the

feature vector of our image. The following paragraphs explain each of these steps in more

comprehensive way.

1) Gradient Computation : The image is filtered with two one dimensional filters

so on the gradient of the image has been gained easily. In horizontal direction, (-1 0 1 )

filter is practised on image initially, and the transpose of the same filter (-1 0 1) is applied

in vertical direction. This gradient computation filter is provided as default in digital image

environment. Also there are lots of parameters that we need to set in gradient computation.

One of them is signed or unsigned gradient settings. The unsigned case is used where the

direction of the contrast is unneeded, on the other hand if direction of contrast is important

for our implementation we will use signed gradient. The gradient values range from 0 to

π and 0 to 2π in case of unsigned and signed respectively. In our case, we use unsigned

gradient because we are just interested in the differential zone regardless of its direction.

After gradient computation steps computing the histogram for each cells according to the

number of bins.

2) Cell and Block computation: The power of HOG depends on separation of the

image into cells. Cells are formed with a size of pixel, this size give the shape of the cells.

Simply it can be defined as the number of pixels contained in a cell. In this work we use

[4x4] pixel sized cells for car descriptor and [8x8] cells for human descriptor. The difference

between cell sizes is derived from the differences in used sliding window size. Then cells are

converted into histogram of gradient by means of compiled bins (Fig. 3.7). Each bin has a

vote and votes are weighted with the magnitude of a given point which belongs to cell. If we

prefer to construct our histogram of cell with larger number of bins, our histogram becomes

more detailed. In this study our histograms have same number of bins. Both the car and

human descriptor uses 9 bins. These histograms that denote the each cell get together and

grouped histograms form our block. We need these blocks because we can not accumulate

this histogram directly in a single feature vector. Before the creation of our feature vector

we need normalization, thus normalization is done among a group of cells, which is called

block. The block sizes in our study are fixed for both object classes. Each of the car and

human descriptor uses [2x2] block size; hence it means our blocks include 4 histograms.

Later on, normalization function is computed over the block and all histograms inside the

blocks are normalized according to this normalization function. Shift value, which is named
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as descriptor stride, means the number of cells overlapped by block, in other words it is the

quantity of block striding cell by cell. In this work the descriptor stride is set to half the block

width, in order to have 50% overlap. This amounts to 4 pixels for car descriptor and 8 pixels

for human descriptor. Also the types of normalization function could be applied along these

four schemes [12]:

1. L2-norm, v ← v/
√
‖ v ‖ 2

2 + ξ2;

2. L2-Hys, L2-norm followed by limiting the maximum values of v to 0.2 and renormal-

ising, as in Lowe [38];

3. L1-norm, v ← v/(‖ v ‖ 1 + ξ);

4. L1-sqrt, L1-norm followed by square root, v ←
√
v/(‖ v ‖ 1 + ξ).

We use L2 normalization function in our both car and human descriptor. In these

schemes, ’v’ is the normalized descriptor vector and ’ξ’ is a small normalization constant to

avoid division by zero.

When this normalization stage is operated, all the histograms can be compiled in a

single feature vector and the complete HOG feature extraction process is depicted in Fig. 3.7

3.2.2. Detection Framework

Majority of object detection systems use the sliding window approach. This simple

window architecture has various advantages. It permits a traditional classifier to be used

for detection and a significant performance enhancement is gained with this approach by

employing HOG. For giving a brief explanation, sliding window can be imagined as fixed

sized mask, which moves over the image with a suitable sliding window stride.

Sliding window must have an efficient scanning strategy. Bypassing any local part

without scanning is unacceptable case that may causes to miss the target object instance.

Therefore it is essential to scan the image in all possible scales. To handle this important

scanning problem, one of the applicable solution is changing the sliding window size. How-

ever, this strategy forces us to create separate descriptor formation for each of the resized

window. So generating of the HOG descriptor again and again, costs too much in terms of

running time and memory usage. Another approach for solving this problem is resizing the

image in different scales with bilinear interpolation. In this study the detection framework
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Figure 3.7. Feature extraction process [12].

is built on this simple scanning strategy. Hence, thanks to the fixed size window, we can

scan the target object instances which will have different size and position in image. By the

resized images our detector is able to capture the whole region by sliding. Resizing the im-

age instead of resizing the sliding window brings about the same effect on detection process

without the need of any other HOG formation.

In order to determine how many resizing operations our image needs, we take into

account the sliding window size and window shifting in pixel size which is named as sliding

window stride. After computing the number of scale steps Sn, our sliding window knows

how many time it is going to move over the each scaled image in horizontal and vertical

direction. This stride parameter expresses how far away the sliding window moves in the

each iteration of each scaled images. The necessary computational steps as codes are given

in Appendix A under the title of Software for Detection Framework.

After explaining the scanning technique, we will consider on what window size is the

most suitable one for our car and human classes. Different window sizes for different object

classes are recommended in related works. We use [128x64] pixel sized sliding window
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for human detection as proposed by Dalal and Triggs [11]. [40x100] pixel sized window is

preferred for car detection and height / width ratio is obtained from the images in the training

dataset. Later on, with determination of sliding window size for each class, we can compute

the dimension of final feature vector. While computing this vector we take in account the

parameter values which are mentioned in cell and block computation subsection.

For human image, descriptor stride is 8 pixels which means our [128x64] sliding

window moves by 8 pixels in every iteration. Horizontal step number can be computed

from ((128 / 8) − 1) as 15 and vertical step number is 7 from ((64 / 8) − 1) computation.

Also each histogram have 9 bins and each block have 4 histograms, thus 36 oriented bins

come from every computed blocks. As a result this multiplication (15 × 7 × 36) gives

the final feature vector dimension. To sum up, for human detection our sliding window

return the [3780 x 1] fixed sized matrix. It means that each of the candidate detected area

is encoded into this feature vector. For car image, all parameters are similar with human

descriptor without the descriptor stride and sliding window size. In car image descriptor

stride are 4 pixels so [40x100] sliding window moves by 4 pixels in every iteration. With the

same computation method car descriptor has 9 horizontal step numbers and the vertical step

number is 24. Therefore from this multiplication operation (9 × 24 × 36) all car detections

formed in [7776 x 1] feature vector. In addition this feature computation operation allows us

pre-allocation of the register. Thanks to this beforehand preparation we achieve to improve

our algorithm running time performance.

3.2.3. Classification with SVM

As we mentioned in previous parts, the detection system in this study is constructed

on a supervised learning technique. It means we have predefined samples which are sampled

as object or non-object. We find these labelled inputs from a set of training image examples

with and without object instances. Therefore, the HOG descriptor form ’feature vector’ is

used as an input value which represent the labelled fix-sized samples to learn a decision

function. In this thesis, we have used a Support Vector Machines (SVM) classifier.

SVM is a binary classifier algorithm that creates set of hyperplanes in a high dimen-

sional space and makes its mind according to this metric. There are several kinds of SVM but

we use linear kernel implementation named as SVMLight in these all applications. SVM-

Light is an implementation of Vapnik’s Support Vector Machine [50] for the problem of pat-
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tern recognition. The optimization algorithms used in SVMLight are proposed in Joachims’

study [28]. Our SVMLight classifier just need ’C ’ parameter in learning process, this value

represents the weight for misclassified points. Later on, in our whole learning process, we

adjust this parameter as 0.5 for generating both car and human classifier.

Before conducting the SVM classifier on candidate feature vector, we have to com-

plete the learning phase and generate the model also it can be named as binary classifier.

Each of the car and human binary classifier is trained in two stages like shown in Fig. 3.8.

In the first stage, we train detector with positive and negative training image sets. Both the

positive and negative images are converted into the form of the object sliding window form,

it means car training input images must be in size of [40x100] and human input images have

to be in size of [128x64]. After training on these centred and normalized images we gener-

ate the initial object model. It is called as initial classifier because it is the temporary one

which is used to create the final classifier. This classifier enhancement is obtained by retrain-

ing our model in the second stage. The initial classifier is used to scan the negative training

images for catching the false negative samples. Also it can be named as ’hard negative exam-

ples’ which affects our classifier performance in a bad way, because our classifier evaluates

this object-free window as a target object. Then, the classifier retrained with this enriched

training dataset. This new training set comprise from the positive training set which is not

changed and the negative training set which contains initial negatives and hard examples.

Our test shows us, larger number of hard examples does not necessarily improve the perfor-

mance, this situation changes from detector to detector. Also the number of hard examples

is determined with the initial detector performance. The necessary computational steps as

codes are given in Appendix B under the title of Software for Learning Phase.

Our training examples are labelled with ( -1, 1 ) values. It means, our positive training

feature vectors are assigned as ’1’, and the negative training feature vectors are labelled as ’-

1’. By means of these labelled data our classifier learns the average target object appearance

and generates the model.

As pointed out in above, we can built our classifier on training dataset. Thanks to

the modification of HOG on omnidirectional image, we introduce in Chapter 4, we are able

to use the same classifiers which is trained with perspective car and human image. If we

explain further, we can classify the either omnidirectional or panoramic images with the

same classifier that generated here on the perspective camera dataset.

Under the light of these information, we create the object model with SVMLight and

previously defined HOG detector for human with INRIA human dataset [11]. This dataset
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Figure 3.8. Learning Phase [12].

includes 2416 positive windows and 1218 negative images as a training dataset. It is easy to

capture the [128x64] window samples from positive training window, because of the centred

human instances. Also the negative images is randomly cropped for ten times from the each

negative images, thus we use 12180 negative sample windows for training. After that we

check our human classifier on INRIA’s test set which contains 1126 positive window with

453 negative images. Results show us human detection is carried out successfully.

In a similar manner, we trained our car detection classifier with combination of UIUC

car dataset [1] and TU Darmstadt car database [36]. Mainly we use 550 UIUC positive

training images with 500 negative training images of UIUC dataset. In addition we enrich

this positive training set with Darmstadt’s 52 side view images. By this combined training

set, which totally contains 602 images, we enhance the success of our car detector. After

extraction of 2733 false negative samples we apply the retraining process, and then we reach

the more successful classifier. Also the test result on UIUC test set which includes 170

images approves the perfection of our classifier at detecting the cars. All this learning steps

are conducted as mentioned in Appendix B.

After we obtained our final classifier, it is ready to examine on test image in detec-

23



tion life-cycle. The candidate feature vectors, which is extracted from test image by HOG

detector, are evaluated with classification function of SVMLight. Each of the detected can-

didate window is scored that is placed on upper-left corner of each detected bounding box

like demonstrated in Fig. 3.9. This SVM score tags represent the possibility of belonging

to interested object class, moreover we use these scores in all evaluation cases like fusing

multiple detection, determining the overlapping detections, thresholding etc.

3.2.4. Localization of Multiple Detections

After obtaining corresponding scores for each feature vector by classifier, multiple

overlapping detections for each object instance are produced. We need to eliminate low

scored detected windows by thresholding. The threshold may vary according to the em-

ployed SVM implementation. But thresholding the lower scored detections is not enough

for a successful result. We still need to fuse multiple detections which intersect with each

other on the same object instance, and also we need to evaluate our final detections

Before this localization operation, we decide on by which computation metric we

determine whether detections are overlapping or not.

3.2.4.1. Overlapping Computation Metric

For eliminating or comparing the bounding boxes, we have to find out how much

these boxes are far away to each other. In other way our main problem can be defined as

determining the intersection ratio between the intersecting boxes. Equation 3.1 gives us the

overlapping determination strategy: firstly, the intersection area of these boxes is worked

out, and then the found value is proportioned to the value that corresponds to the union

area of these boxes [16, 12]. As explained before, our detection network is based on the

window scanning approach, using this overlapping computation metric is the suitable way

because our detection results are rectangle shaped. In this equation O denotes the overlap

ratio and detected windows represent the compared any two bounding boxes. To be said that

two bounding boxes belong to the same object, O must exceed 0.5 (50%). This threshold is

accepted as a default value in the examined related works.
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O =
area(detectedwindow1 ∩ detectedwindow2)
area(detectedwindow1 ∪ detectedwindow2)

(3.1)

3.2.4.2. Non Maximum Suppression

After we defined our overlapping computation method, now we are going to explain

how we handle with multiple overlapping detected windows. For this purpose several meth-

ods centered on heuristic are proposed, but we need the one that especially works on our

detection scale space like Non-Maximum Suppression (NMS). Several types of NMS ver-

sions are available, some of them are easy to implement and others can be highly efficient.

We employ the basic NMS form [12] for our implementation in this thesis.

The essence of this process is while eliminating the redundant intersecting detections,

trying to choose the highest scored one between its neighbourhoods as a final detection. It is

named as Non-Maximum Suppression because this fusing method makes a local maximum

search. Where local maximum is greater than the others in their region, the NMS algorithm

chooses this one as a superior bounding box of this focused area. The raw incoming detec-

tions from our SVM classifier are at very different scales or positions, in other words they are

not in same scale space to finding the local maximums together. Therefore, for finding the

dominant detection we initially have to know the accurate position of the boxes on the origi-

nal image. The solution is representing detections in a position scale pyramid that means we

map our detections in 3-D space and weight them by their SVM scores.

Let pi = [xi, yi] and si denote the raw detection position (upper left coordinates) and

scale, respectively, for the i-th detection. The detection score is denoted by wi. The inte-

grated form is defined as [xi, yi, si, wi], that corresponds to the input parameters of our NMS

function especially for rectangular shaped Bounding Box (Bbox). Firstly we convert this 3-D

space form, [xi, yi, si], into its real size in 2-D. Roughly it is managed by resizing the raw

coordinate [xi, yi] according to si information. This conversion is conducted for all BBoxes

to find out the real position and relationship between them. This reduced form is called as

rescaled-real detection in this thesis. Secondly the detections are sorted in descending order

by this sorting operation we guarantee to pick the greatest scored Bboxes finally. Then, we

check whether compared Bboxes intersect or not, if there is no intersection it means these

Bboxes belong to different object instances so they are not suppressed. However if there is

an intersection, we compute the intersecting area. The maximum coordinate values of left-
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top corner gives the intersecting area’s left-top coordinate, in a similar manner the minimum

coordinate values of right-bottom corner gives the intersecting area’s right-bottom coordi-

nate. After gathering the intersection boundary we compute the union area and compute the

O value by the same overlapping computation metric that is defined before. Finally if O

value greater than threshold ratio, NMS function decide on these Bboxes belong to same ob-

ject instance and suppresses the lowest scored one. In other words NMS function returns the

picked detections indexes. NMS algorithm for regular sliding windows (rectangular Bboxes)

is presented in Appendix C.

The threshold of 50% may not be adequate in certain applications and it can be ad-

juster by the user. Intersecting bounding boxes in a different overlapping ratio and imagi-

nary case are demonstrated in Fig. 3.9. In this imaginary case we set our threshold as %50.

Firstly our NMS function sorts the BBoxes in descending order BBox3, BBox2, BBox1 re-

spectively. This order depends on the score of these detections, so the comparison process

between these BBoxes starts from BBox3. In the first case, (BBox 3 with BBox2 and BBox3

with BBox1 ) because of insufficient O value both these two intersecting boxes are accepted

as different two detections. However in the second case, (BBox 2 with BBox1 ) bounding

boxes intersect with a O value that grater then threshold so one of them is accepted as de-

tection, the other one, namely Bbox1, is eliminated. By this elimination BBox1 is situated

out of the next comparison. As a result, after NMS applied on these three detections BBox2

and BBox3 are picked as final detections. Like being in this sample case the accuracy of our

NMS algorithm is tested by various synthetic cases.

Moreover, for visualization of all detections we also need a drawing function that

is called for drawing bounding boxes. The same representation of detection in scale space

pyramid with confidence scores is also used as a parameter for this function. Before plotting

a detected zone, rescaled-real form of Bbox is obtained like in NMS function, and then

plotting the found coordinates create the view of detection. In figure 3.10, a sample NMS

operation shows the local maximums on an UIUC test image and how multiple detections

are suppressed for both cars.

3.2.4.3. Evaluation Methodology

The same overlapping computation metric with the same BBoxes comparison method-

ology in the NMS is also used for evaluating our object detector performance. Differently
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Figure 3.9. A synthetic scenario that contains three intersecting detections with differ-

ent overlapping ratios; O value between BBox1 (1.85) and BBox2 (2.53)

is greater than %50, BBox3 (3.34) intersects with the others in lower O

value.

from there, in this case detections are compared with the groundtruths. Groundtruth are

equal to the number of objects in image and it is a representation in BBox form that gives

information about where the object instances are located. It is also named as annotation.

After the rescaled-real forms of detections are obtained, annotations are checked with all

these detections whether they intersect. The proportion of intersection area to union area

gives us the O value and by this value we give the decision on correctness of our detections.

If O value of detection with any annotation greater then threshold the detection is accepted

as true positive (TP), that mean this found detection really represent a object instance in this

image. If there is inadequate O value we label this detection as false positive (FP). Also if

there is an annotation and no detection is found that corresponds to it, this unfound object

instance number gives us the false negative (FN). FN can be called as the number of missed

objects.

To measure how a detector performs in practice and localizes the detections on image,

we draw precision-recall curve. The aim of precision-recall curves is to show the two perfor-

mance metrics together: Precision (#True positives / #True Predicted positives) and Recall

(#True positives /#True Actual positives). Therefore plotting a precision versus recall on a
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(a) (b)

Figure 3.10. An UIUC test image, (a) after multiple scales dense scan (raw detection

result), (b) fusion of these multiple detections with non-maximum sup-

pression.

log-log scale gives us this curve, in our experimental results we plot recall along x-axis and

precision along y-axis. The larger the area under the curve, the better the performance of the

algorithm.
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CHAPTER 4

IMPLEMENTATION OF THE PROPOSED METHOD

After the preparation of standard HOG + SVM infrastructure, the explanation of

how it is applied on omnidirectional images is presented in this chapter. In order to obtain

a complete descriptor of an omnidirectional image, we propose modifications on standard

HOG + SVM detection method.

When considering the all phases of regular HOG + SVM method which were in-

troduced in the previous chapter, the real differences occurs in HOG descriptor formation

stage. Especially Gradient computations for omnidirectional camera with a camera cali-

bration technique and conversion of gradients for omnidirectional sliding window are the

additional steps in feature extraction process. These additional parts are demonstrated in

Fig. 4.1 to show where exactly the modifications are placed in feature extraction step.

Figure 4.1. In which steps of feature extraction life-cycle we applied the modified

HOG descriptor is shown.

These two modifications enable us to carry out a direct classification on omnidirec-

tional image. In this way, we can use one type of perspective image trained classifier on
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both omnidirectional and panoramic images. In other words, since we train our both detec-

tors with perspective camera training images, thanks to the modified HOG we can give the

collected HOG feature to the same classifier.

4.1. Processing of Omnidirectional Images

Due to their non-linear imaging geometry, working with omnidirectional cameras

requires geometric transformations. At first sight, converting an omnidirectional image to

a panoramic or several perspective images may seem to be a practical solution. However,

it has two major drawbacks: The conversion, which is a non-linear warping, can be com-

putationally expensive for large video frames especially when an omnidirectional image is

converted to numerous perspective images to properly fit sliding windows. More impor-

tantly, the interpolation required by the image warping introduces artifacts that affect the

detection performance.

Among a small number of omnidirectional object detection studies (cf. Section 2.3),

none of them developed a method peculiar to omnidirectional cameras. On the other hand,

last decade witnessed some effort on computing SIFT features in omnidirectional images.

Starting from [13], researchers tried to avoid warping omnidirectional images and instead

they assumed a unitary sphere S2 as the underlying domain of the image function. When

these studies (which consider the convolution step of SIFT) are examined, several approaches

can be observed. Below, we describe these approaches briefly.

1. The simplest approach would be backprojecting the image onto a sphere surface S2 and

convolving it with a spherical Gaussian function GS [6]. Since this approach requires

resampling of the whole image, authors in [13] project the kernel GS into image plane

instead of backprojecting the image onto S2, and the convolution is carried directly on

the image plane. This avoids image resampling but since the mapped Gaussian kernel

changes at every image location it leads to an adaptive filtering. This computational

complexity makes the solution unsuitable.

2. Another approach processes omnidirectional images on the sphere after an inverse

stereographic projection [25]. Scale space is computed with Gaussian kernels on the

sphere, while, the convolution is performed using the spherical Fourier transform. It

was stated in [3] and [37] that this operation leads to aliasing issues due to bandwidth
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limitations.

3. The processing on the sphere is achieved through a suitable differential operator that

adapts to the non-uniform resolution, while using the original image pixel values. In

[5], scale space representation is computed using the heat diffusion equation and dif-

ferential operators (Laplace-Beltrami operators) on the non-Euclidean (Riemannian)

manifolds. Moreover, authors in [3] tested this approach by evaluating the matching

performance of SIFT on rotated and translated images. Lastly, authors in [41] com-

pared the original SIFT with the version modified by Laplace-Beltrami operators on

the Riemannian manifolds and mentioned that the modified version has a better per-

formance. They also extended the method to all central catadioptric systems. Later,

this approach was extended to radially distorted images as well [37].

Exploiting the experience gained by the summarized previous work, we decided to

compute the gradients on Riemannian manifolds and adapted the HOG computation step

(section 4.2.1)of our algorithm accordingly.

4.2. The proposed HOG computation

In the sliding window based object detection approach, a window is moved horizon-

tally and vertically on different scales of an image. No rotation is applied since there is

an assumed orientation of the object, for instance pedestrians should be upright. In a similar

manner, to detect objects in omnidirectional images, we rotate the sliding window around the

image center. In addition, to achieve a mathematically correct detection method, we modify

the image gradients. The operations that we perform can be divided into two steps:

1. Modification of gradient magnitudes using Riemannian metric.

2. Conversion of gradient orientations to form an omnidirectional (non-rectangular) slid-

ing window.
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4.2.1. Modification of Gradient Magnitudes Using the Riemannian

Metric

4.2.1.1. Sphere Camera Model

We use the sphere camera model [22] which was introduced to model central cata-

dioptric cameras. The model comprises a unit sphere and a perspective camera. The projec-

tion of 3D points can be performed in two steps (Fig. 4.2). The first one is the projection

of point Q in 3D space onto a unitary sphere, resulting in point r, and the second one is a

perspective projection from the sphere to the image plane, resulting in point q. This model

covers all central catadioptric cameras with varying ξ. ξ = 0 for perspective cameras, ξ

= 1 for para-catadioptric cameras (the ones using a paraboloidal mirror), 0 < ξ < 1 for

hyper-catadioptric cameras (the ones using a hyperboloidal mirror).

Figure 4.2. Projection of a 3D point onto the image plane in the sphere camera model.

A point on the sphere r = (X, Y, Z) can also be represented by two angles (θ, ϕ), the

former is the vertical angle and the latter is the azimuth (Fig. 4.3a). In para-catadioptric

case (ξ = 1), if we place the image plane at the south pole (which only differs the scale),

f = 2r = 2 and the perspective projection within the sphere model corresponds to the

stereographic projection (Fig. 4.3b).
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Figure 4.3. (a) A 3D point on the sphere is represented by two angles (θ, ϕ). (b) Con-

sider the unitary sphere (r = 1). Image plane is placed at the south pole

(f = 2). A 3D point is first projected onto the sphere surface and then

projected onto the image plane, where in this case ξ = 1.

4.2.1.2. Differential Operators on Riemannian Manifolds

Let us briefly describe how the differential operators on the Riemannian manifolds

are defined. Suppose M denotes a parametric surface on <3 and gij denotes the Rieman-

nian metric that encodes the geometrical properties of the manifold. In a local system of

coordinates xi on M, the components of the gradient are given by

∇i = gij
∂

∂xj
(4.1)

where gij is the inverse of gij .

A similar reasoning is used in [3] and [41] to obtain the Laplace-Beltrami operator,

which is the second order differential operator defined on and used for scale space represen-

tation for SIFT. In this paper, we are working on the first derivatives. Let us briefly go over

the para-catadioptric case and derive the metric that allows us to compute the derivatives on

the sphere directly using the image coordinates.

Consider the unitary sphere S2 with radius = 1 (Fig. 4.3a). A point on S2 is repre-

sented in Cartesian and polar coordinates as

(X, Y, Z) = (sin θ sinϕ, sin θ cosϕ, cos θ) (4.2)
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The Euclidean line element in Cartesian coordinates, dl, can be expressed in polar coordi-

nates as

dl2 = dX2 + dY 2 + dZ2 = dθ2 + sin2 θdϕ2 (4.3)

The stereographic projection of the sphere model sends a point on the sphere (θ, ϕ) to a point

in polar coordinates (R,ϕ) in the image plane (plane <2), for which ϕ remains the same and

θ = 2 tan−1(R/2) in a para-catadioptric system (Fig. 4.3b).

Using the identities, R = x2 + y2, ϕ = tan−1(y/x) the line element reads

dl2 =
16

(4 + x2 + y2)2
(dx2 + dy2) (4.4)

giving the Riemannian inverse metric

gij =
(4 + x2 + y2)2

16
(4.5)

We refer the reader to [3] and [5] for a detailed derivation of catadioptric Riemannian metric.

With this metric, we can compute the differential operators on the sphere using the pixels in

the omnidirectional images. In particular, norm of the gradient reads

|∇S2I|2 = (4 + x2 + y2)2

16
|∇<2I|2 (4.6)

We see that the para-catadioptric gradients are just the scaled versions of the gradients in

Euclidean domain. Therefore, we simply multiply our gradients with metric gij .

At the center of the omnidirectional image, (x, y) = (0, 0), Riemannian and Eu-

clidean gradients are the same. At an image location where
√
x2 + y2 = 2, which corre-

sponds to a 3D point at the same horizontal level with the sphere center (mirror focal point),

the Riemannian metric is equal to 4. Therefore the gradients are magnified as we move from

the center to the periphery of the omnidirectional image. This metric was extended to all

central catadioptric systems by Puig et al. [41].

4.2.2. Conversion of Gradients for Omnidirectional Sliding Window

After the image gradients are obtained with Riemannian metric, we convert the gradi-

ent orientations to form an omnidirectional (non-rectangular) sliding window. A rectangular

object in a perspective image is warped in the omnidirectional image, therefore the gradients

in the sliding window should be computed as if a perspective camera is looking from the

same viewpoint.
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Figure 4.4. Two cars in the omnidirectional image are indicated with black frames.

The one close to the camera covers a larger area and it should be searched

with a more bent sliding window, the other one is far away and it should

be search with a more straight sliding window

The shape of the omnidirectional sliding window varies according to the size and

location of the object in the omnidirectional image. As depicted in Fig. 4.4, a car close to

the camera is severely bent. However, a window covering the car at a distance is close to

a rectangle. The difference can not be represented with a scale ratio, therefore we are not

able to train one object model for detection in omnidirectional images. Since, it did not

seem plausible to train many omnidirectional HOG models, we chose to train our object

models with perspective image datasets. The modifications we made for HOG computation

in omnidirectional sliding window enables us to compare it with the perspective camera

HOG model.

Fig. 4.5a shows a half of a synthetic para-catadioptric omnidirectional image (400x400
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pixels) where the walls of a room are covered with rectangular black and white tiles. Con-

ventional HOG result of the marked region (128x196 pixels) in this image is given in Fig.

4.5b where gradient orientations are in accordance with the image. However, since these are

vertical and horizontal edges in real world, we need to obtain vertical and horizontal gradi-

ents. Fig. 4.5d shows converted gradients for the region marked in Fig. 4.5c, which is an

example of the proposed HOG computation.

Since the Cartesian coordinates in the detection window (Fig. 4.5d) corresponds to

a non-linear distribution of pixels in the image (Fig. 4.5c), we employ bilinear interpolation

with backward mapping both for gradient orientations and gradient magnitudes.

Figure 4.5. Description of how the gradients are modified for an omnidirectional slid-

ing window. Result in (b) is the regular HOG computed for the region

marked with dashed lines in (a). Modified HOG computation gives the re-

sult in (d) for the region marked in (c). Vertical and horizontal edges in real

world produce vertical and horizontal gradients in the modified version.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter we try to compare the performance of the proposed method (omni-

directional sliding window) with the regular method on our omnidirectional and panoramic

image set. First, implementation details that we applied in this thesis are introduced in the

following paragraphs.

Our experiments consider the detection of standing humans and cars viewed from

either side. The same classifiers are used as mentioned in section 3.2.3, for human detection

we trained a 128x64 model using INRIA person dataset as described in [11], for car detection

we trained a 40x100 model using UIUC [1] and Darmstadt [36] sets together totalling 602

car side views.

While training both object models, as defined in detail in section 3.2, the number of

the negative samples in the dataset were increased by collecting so-called ’hard-negatives’.

These are the false-positive detections of the initial model that was trained with the original

positive and negative samples of the dataset. Therefore, second stage training with this

negative set, improved both in terms of number and quality, is used for the final classification.

Also, before concentrate on experimental details, we will give a brief explanation

on used software and equipment. In this study, all implementations are conducted with

MATLAB R2012b. In addition for enhancing the running time performance, MATLAB

allows us to rewrite the any time consuming part of our MATLAB methods with using C

/ C++ codes. This compilation work is conducted by MATLAB and the compiled file is

named as Mex file. Hence, some extraction and modification parts of our MATLAB code

is performed by Mexing. From the side of used equipment, omnidirectional images are

captured by Canon G6 with a convex parabolic mirror apparatus 1.

1http://0-360.com/
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5.1. A Fair Annotation and Overlapping Computation for

Omnidirectional Sliding Approach

Within the scope of working with omnidirectional images, there is a necessary ar-

rangement that is especially related with annotation generation and overlap computation of

proposed sliding windows.

5.1.1. Annotation Generation

We have two types of test images; the first one is the omnidirectional image that is

used for proposed (omnidirectional rotating sliding window) and regular (rectangular slid-

ing window) method and the other one is panoramic images which is used for converting

into panoramic from omnidirectional method. A panoramic image and an omnidirectional

image have a different sliding window framework. Because of their peculiar shape; om-

nidirectional image is scanned in a circular pattern, whereas a panoramic image can be

scanned in a rectangular (horizontal / vertical) pattern. The default sliding window detec-

tor for regular method, introduced in section 3.2.2, can be applied on panoramic image.

Although we can represent the panoramic sliding window detection in a standard integrated

form [xi, yi, si, wi] because of its rectangular shape, the same representation is not suitable

for omnidirectional one. Moreover, we need a doughnut slice shape detection representa-

tion form like [eri,mai, si, wi]. Where wi and si correspond to same parameter like being

in the standard integrated form; differently eri and mai correspond the end-radius value

and middle-angle value of i-th omnidirectional sliding detection respectively. An example

is given in Fig. 5.1. Radius values are in pixels and give the distance from image center

coordinate, the start radius value is calculated from the end radius value. Angles are in radi-

ans ranging from 0 to 2π, also start angle and end angle is derived from middle angle value

which divides the omni sliding window into equal two parts vertically.

After defining the omnidirectional sliding window representation, we have to use this

formation while generating the annotation for omnidirectional images. We need to create

three kinds of annotation corresponding to the mentioned three methods.

Annotations of the proposed HOG approach (e.g. Fig. 5.4 a) are doughnut slices,

annotations of the regular HOG approach are rectangles rotating around the omnidirectional
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Figure 5.1. On this omnidirectional image sample, dashed line shows the angles and

the other lines denote the radius. This representation shows our omnidi-

rectional sliding window form.

image center. Finally, annotations of the HOG on panoramic image approach are upright

rectangles.

Creating these annotations manually for each method will cause inequality for the

same object instance. For a fair comparison, the annotations are separately prepared from a

template annotation. We just generate the omnidirectional sliding window form annotation

for proposed HOG approach on an omnidirectional image as a template; and then owing to a

mathematically conversion process, annotation of the regular HOG on the same omnidirec-

tional image and annotation of the HOG on panoramic image is derived from the previously

determined template. Another important point stands out while determining this template

annotation. We should prepare this annotation according to our positive training dataset; we

left a similar space from left, right, bottom and top side of the objects.

Also we should underline that, for providing a fair scanning area on both panoramic
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and omnidirectional images; we generate our omnidirectional image in size of [750 x 750]

and convert them into our panoramic images in size of [645 x 257]. By this sizing we

equalize the radius of an omnidirectional image with a height of a panoramic image, later on

our detectors scanning equal amount of area on the both types of images.

5.1.2. Overlap Computation of Proposed Sliding Window

We defined the evaluation methodology and NMS for regular sliding windows in

Section 3.2.4.2, but these are suitable methods for detection with rectangle sliding window.

We need to define a new overlap computation method for the proposed sliding window that

rotates around the omnidirectional image center. Firstly we had concentrated on a trapezoidal

shape but it did not give an accurate area computation because our formation has a curved

shape. Based on this reason, we assume an omnidirectional image like a circle and assume

an omnidirectional sliding detection like a slice of this circle.

Therefore, we calculate an omnidirectional sliding detection area by the area compu-

tation formula of circle: A = π × r2. In this formula A denotes the whole area of omnidi-

rectional image and r is the radius value of this image. We calculate the desired detection

area by dividing A into small parts according to mid-angle and end- radius information of

detections. After area computation technique is determined, how we give a decision whether

these omnidirectional rotating shapes intersect or not. With the same principle in intersection

of rectangular shapes (sec. 3.2.4.2); instead of maximum coordinate values of left-top cor-

ners maximum radian value of the start-angles gives the intersecting area’s left boundary, in

a similar manner instead of minimum coordinate value of right-bottom corner we look into

minimum end-angle value for right boundary. This technique is suitable for cases like inter-

section of BBox3 with BBox4 or BBox6 with BBox7 in figure 5.2. However if we apply same

technique on intersection case of BBox1 with BBox2 or BBox5 with BBox7, a computational

trouble is occurred. This wrong intersection area computation results from the base line de-

picted with dashed line in this figure, because start point (0)is same with the end point (2π)

in a circle geometry. Normally, end-angle of a BBox must be greater than its start-angle,

but if it was on the base line there is an opposite situation. So, we first determine if one of

the compared BBox is on the base line, if it is on the baseline then we determine the position

of the other compared one. According to its position add 2π to the end-angle or start-angle

value. After this addition operation, we reach the accurate covered angle of intersection area
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by subtracting the start-angle from end-angle. Finally we check the intersection area which

can not exceed any of the compared BBoxes. If the intersection area was greater than any of

the two compared BBoxes, it means there is no intersection between these BBoxes. Codes

about NMS algorithm for omnidirectional sliding windows is presented in Appendix C.

We test our overlapping methodology by synthetic cases like depicted in Fig. 5.2

and so on, for this scenario the lower scored ones BBox5 and BBox4 are suppressed in NMS

process. Consequently, thanks to the explained steps of computation, we reach a fair area

computation.

Figure 5.2. BBoxes in this scenario denote the omnidirectional sliding windows, each

intersection between them creates different cases that help to evaluate the

proposed overlapping computation. This computations is conducted de-

pends on the dashed base line.

41



5.2. Evaluation of the Proposed HOG Computation Using Synthetic

Omnidirectional Images

Let us first compare the results of the proposed HOG computation and the regular

(unmodified) HOG computation. Since the computed HOG features are given to an SVM

trained with an image dataset of corresponding object type, we aim to obtain higher SVM

scores with the proposed omnidirectional HOG computation.

5.2.1. Experiment with Synthetic Images of Humans

We artificially created 210 omnidirectional images containing humans. While cre-

ating this set, we followed an approach similar to [25], where images in INRIA person

dataset are projected to omnidirectional images using certain projection angle and distance

parameters. Fig. 5.3 shows an example omnidirectional image, where the regular HOG

window (rectangular, 128x64 pixels) and the proposed omnidirectional HOG window (non-

rectangular) are shown. The HOG features computed with the two window types are com-

pared with their resultant SVM scores. Since the locations of projections in these images are

known, no search is needed for this experiment. However, vertical position of the window

affects the result. For both approaches, we chose the position that gives the highest mean

SVM score. Table 5.1 summarizes the result of the comparison, where we see that the mean

score (also minimum, maximum and quartiles) for the proposed approach is higher than that

of regular HOG window.

5.2.2. Experiment with Synthetic Images of Cars

For synthetic car images, same methodology in the previous subsection is used. 602

perspective car images from UIUC [1] and Darmstadt [36] datasets are projected to omnidi-

rectional images.

40x100 pixel regular HOG computation and the proposed non-rectangular HOG win-

dow are applied on artificial omnidirectional images. Using the vertical positions that give

the highest SVM scores, the two window types are compared in Table 5.2. The result is in ac-

cordance with the human detection experiment: mean SVM score, together with minimum,
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Figure 5.3. Depiction of the regular HOG window (green rectangle) and the proposed

window (red doughnut slice) on an omnidirectional image artificially cre-

ated by projecting a perspective image from INRIA person dataset.

maximum and lower/upper quartiles, for the proposed approach is higher than the regular

method.

5.3. Experiments with Real Omnidirectional Images Containing

Humans

In this subsection, we present the results for a set of images taken with our catadiop-

tric omnidirectional camera which uses a paraboloidal mirror. We compared the proposed

HOG computation not only with the regular HOG window, but also with the approach that

first converts the omnidirectional image to a panoramic image and then performs regular

HOG computation. Although it was explained in Section 4.1 that working on panoramic im-

ages is not a theoretically correct approach, we wanted to test its performance. Warping to a

panoramic image takes less than a second if the image size is not larger than one mega-pixel

(would be faster if conversion process is embedded in the camera), therefore if the perfor-

mance of detection on panoramic image is higher it can still be considered as an option for
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Table 5.1. Comparison of the regular and proposed HOG window by their SVM

scores for human detection

Min.

SVM

score

Lower

quartile

Mean

SVM

score

Upper

quartile

Max.

SVM

score

Regular HOG

window

-1.01 1.16 1.69 2.20 3.21

Proposed

HOG window

-0.42 1.51 1.93 2.45 3.64

Table 5.2. Comparison of the regular and proposed HOG window by their SVM

scores for car detection

Min.

SVM

score

Lower

quartile

Mean

SVM

score

Upper

quartile

Max.

SVM

score

Regular HOG

window

-1.81 -0.38 -0.09 0.24 1.17

Proposed

HOG window

-1.55 -0.17 0.19 0.55 1.79

practical applications.

Fig. 5.4 shows the results for one of the images in the set. Positive detections, after

NMS, are superimposed on the images with the proposed HOG window, the regular HOG

window on omnidirectional image and HOG after panoramic conversion. Only the detections

with SVM scores greater than 1 are shown. The corresponding SVM score of each window

is given at the upper left corner. For the humans in the scene, the average SVM scores for the

proposed HOG, the regular HOG and HOG on panoramic image approaches are 2.94, 2.11

and 2.41 respectively.

To evaluate the overall performance of these three approaches, we plot precision-

recall curves explained in sec. 3.2.4.3 for the whole dataset which consists of 30 real om-
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(a) (b)

(c)

Figure 5.4. Human detection results on an omnidirectional image with SVM scores

(given at upper left corners) greater than 1. (a) Proposed sliding windows.

(b) Regular (rectangular) sliding and rotating windows. (c) Regular sliding

windows on panoramic image.

nidirectional images taken in different scenes including indoor and outdoor environments

(Fig. 5.5). A total of 66 humans were annotated in these images. One can observe that the

performance of the proposed HOG computation is better than the others. Only for a limited

range regular HOG approach performs better, however that is for low recall values. When

recall >0.5, the proposed approach is distinctively superior.

A detection window is considered to be a True-positive if it overlaps an annotation

by 50%, where the fair overlap is computed as explained in sec. 5.1.
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Figure 5.5. Precision-Recall curves to compare the proposed HOG computation, the

regular HOG and HOG after panoramic conversion approaches for human

detection. The data points in the curve correspond to the varying threshold

values for the SVM score, which change from 0 to 5. As the threshold

increases, all approaches reach Precision = 1.

5.4. Experiments with Real Omnidirectional Images Containing Cars

After carrying out experiment on images with humans in previous section, we re-

peated the comparisons between the evaluated methods for car detection.

Fig. 5.6 shows the results for a single image as an example. Similar to Fig. 5.4, scores

are superimposed on detections. For the overall performance comparison of the proposed

HOG computation, the regular HOG computation and HOG after panoramic conversion ap-

proaches for car detection, we plot precision-recall curves (Fig. 5.7) for the our dataset that

includes 50 real images taken in different scenes. A total of 65 cars were annotated in these

images. Similar to the human detection experiment, overlap ratio was computed with Eq.

3.1 and annotations were prepared separately for the three mentioned methods.

When we compare the results in Fig. 5.7 with the ones in Fig. 5.5, one observation

would be that now the proposed method is better than the regular HOG everywhere. This

is due to the fact that car is a wider object than human. The regular HOG computation is
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(a) (b)

(c)

Figure 5.6. Results of car detection on an omnidirectional image with SVM scores

(given at upper left corners) greater than -0.5. (a) Proposed sliding win-

dows. (b) Regular (rectangular) sliding and rotating windows. (c) Regular

sliding windows on panoramic image.

affected more as the width/height ratio of the object model increases because it tries to fit a

rectangle to the object in the omnidirectional image, which is bent more.

A second major observation would be the increased performance of detection on

panoramic image approach. Its performance is comparable to the proposed method as op-

posed to human detection results. This can also be explained by the fact that car has a ’wide’

model with a width/height ratio of 2.5 whereas human has a width/height ratio of 0.5. It is

harder for taller objects, like standing humans, to maintain the original width/height ratio in

panoramic images since lower parts of the panoramic image suffer from an unnatural dis-

tortion. We create the panoramic image on a cylindrical surface that is rotating around the

viewpoint (mirror focal point for catadioptric cameras). As we move down on the projection

surface, same amount of viewing angle starts to cover a larger height in the panoramic image.
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Figure 5.7. Precision-Recall curves to compare the proposed HOG computation, the

regular HOG and HOG after panoramic conversion approaches for car de-

tection. The data points in the curve correspond to the varying threshold

values for the SVM score, which change from -1.0 to 1.5

This phenomenon is explained in Fig. 5.8 and can be observed in Fig. 5.4. Since the cars

in panoramic images are affected significantly less than humans, regular HOG on panoramic

images has a performance comparable to the proposed method for car detection.
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Figure 5.8. Formation of panoramic image on a cylindrical surface that is rotating

around the single viewpoint (mirror focal point). As we move down on the

projection surface, same amount of viewing angle starts to cover a larger

height in the panoramic image (α = β, x1 > x2).
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CHAPTER 6

CONCLUSION

We have described a method to perform human and car detection directly on the om-

nidirectional images. As a base, we took the HOG + SVM approach which is one of the

popular object detection methods and used the sliding window based object detection frame-

work. In order to detect objects in omnidirectional images, we rotate the sliding window

around the image center. In addition, to achieve a mathematically correct detection method,

we modify the image gradients with two steps. Firstly we modify the gradient magnitudes

using Riemannian metric then convert the gradient orientations to form an omnidirectional

(non-rectangular) sliding window.

After describing how the feature extraction step of the conventional method should be

modified, we performed experiments to compare the proposed method with the regular HOG

computation on omnidirectional and panoramic images. Results of the experiments indicate

that the performance of the proposed approach is superior to the regular HOG approaches

for human detection. As for car detection, HOG on panoramic images has a performance

comparable to the proposed method, whereas the performance of regular HOG on omnidi-

rectional image has gone worse. Performance increase on panoramic images is explained by

the fact that width/height ratio of the car model is high. This is an advantage for detection on

panoramic image approach but a disadvantage for applying regular HOG on omnidirectional

images.

We can conclude that the proposed HOG computation is not only the theoretically

correct approach but also its performance is superior (considering that objects with a width /

height ratio >2.5 are rarely of interest). Please also note that the regular HOG on panoramic

image approach has an extra step of image conversion which can be considered as a disad-

vantage.

Finally we can say that despite the benefits of omnidirectional system, none of the

encountered studies handled the omnidirectional imaging system with a feature extraction

method for a direct classification on it. With our proposed method we try to overcome this

deficiency in the literature. We believe our direct approach will be a useful contribution to

the community for objects surveillance and omnidirectional vision based applications.
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CHAPTER 7

FUTURE WORK

In this work, we concentrated on HOG features for human and car detection. How-

ever, other features, especially the ones based on image derivatives can be modified in a simi-

lar fashion for a theoretically correct and effective use in omnidirectional cameras. Moreover,

part based object detection methods can be modified to be used with omnidirectional cam-

eras. Detection of parts may not need a modification for omnidirectional images, since parts

are smaller and relatively less deformed when compared to the whole object. However, the

topographical relations between the part would require modification based on the imaging

geometry of the camera. Also, rotation invariant HOG for object detection on omnidirec-

tional images will be effective for this work.

In fact, best performing object detection techniques today do not use a single source

to extract features. Therefore, using combination of multiple detection methods and com-

bination of features from different sources such as first derivative, second derivative, color,

edge etc. will contribute to the success of this work.

From the other side, the number of images in the used test dataset will be extended

in future time. Furthermore this proposed approach will be adapted for other object classes

like types of vehicles (bicycle, truck, bus etc.) or types of animals (cow, dog, cat etc.) for a

more comprehensive study.
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APPENDIX A

SOFTWARE FOR DETECTION FRAMEWORK

Figure A.1. Computation of the number of Sn (scales steps) and the number of window

stride for omni directional car images
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Figure A.2. Computation of the number of Sn (scales steps) and the number of window

stride for panoramic human images.
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APPENDIX B

SOFTWARE FOR LEARNING PHASE

Figure B.1. Generation of human object model from the INRIA person dataset.
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Figure B.2. Retraining of UIUC car object model by Hard Negative Examples.
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APPENDIX C

SOFTWARE FOR MULTIPLE DETECTION

LOCALIZATION

Figure C.1. Nms algorithm for regular sliding windows (rectangular Bboxes).
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Figure C.2. Nms algorithm for omnidirectional rotation sliding windows (doughnut

slice Bboxes) (cont. on next page).
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Figure C.3. Nms algorithm for omnidirectional rotation sliding windows (doughnut

slice Bboxes) (cont.).
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