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ABSTRACT

IMPROVED IMAGE BASED LOCALIZATION USING SEMANTIC

DESCRIPTORS

Place recognition and Visual Localization (VL) for autonomous driving are the

topics that keep their popularity in the field of Computer Vision. In this study,

semantically improved Hybrid-VL approaches, that use localization aware semantic

information in street-level driving images are proposed. Initially, Semantic Descriptor

(SD) is extracted from semantically segmented images with a Convolutional Neural

Network (CNN) trained for localization task. Then, image retrieval based VL task is

performed using the approximate nearest neighbor search (ANNS) in 2D-2D matching

context. This proposed method is named as SD-VL and its success is compared with the

success of the state-of-the-art Local Descriptor (LD) based VL method (LD-VL) which

is frequently used in the literature. Furthermore, with the aim of alleviating the

shortcomings of both two methods, a novel decision-level Hybrid-VL (Hybrid-VLDL)

method is proposed by combining SD-VL and LD-VL in post-processing stage. Also

feature-level Hybrid-VL (Hybrid-VLFL) method is proposed in order to produce

automatically tuned hybrid result.

These proposed VL methods are examined on two challenging benchmarks;

RobotCar Seasons and Malaga Downtown Data Sets. Moreover, a new VL data set

Malaga Streetview Challenge is generated by collecting Google Streetview images on the

same path of Malaga Downtown in order to observe impact of environmental and

wide-baseline changes. This newly generated test set will be useful for researchers

studying in this field. After all, the proposed semantically boosted Hybrid-VLDL method

is able to increase localization performance on both RobotCar Seasons and Malaga

Streetview Challenge data sets by 11.6% and 4.5% Top-1 recall@5, and 4% and 5.4%

recall@1 scores respectively. Additionally, reliability of our hyper-parameter (W) based

Hybrid-VLDL approach is supported by very close performance of the Hybrid-VLFL

method.

iv



ÖZET

ANLAMSAL BETİMLEYİCİLER İLE GELİŞMİŞ İMGE TABANLI

KONUMLANDIRMA

İnsansız araçlar için yer tespiti ve İmge Tabanlı Konumlandırma (İTK)

Bilgisayarlı Görü alanındaki popülerliğini koruyan araştırma konularının başında yer

almaktadır. Bu çalışmada, konuma duyarlı anlamsal bilgiye dayalı olarak sürüş

senaryosu içeren sokak düzeyindeki imgeler üzerinde çalışan Hibrid-İTK yaklaşımı

önerilmiştir. Bu amaç dorğrultusunda ilk aşama olarak, Evrişimli Sinir Ağı (ESA)

üzerinde konumlandırma hedefi ile eğitilen Anlamsal Betimleyici (AB) elde edilmiştir.

Ardından, iki boyutlu (2B-2B) imge eşleştirmesine dayalı olan konumlandırma

yöntemimiz yaklaşık en yakın komşu arama (YEKA) yaklaşımı ile gerçeklenmiştir.

AB-İTK olarak isimlendirilen bu yöntemin konumlandırmadaki başarısı, literatürde

sıklıkla kullanılan Yerel Betimleyici (YB) tabanlı İTK yöntemi (YB-İTK) ile

kıyaslanmıştır. Buna ek olarak, bahsi geçen bu YB-İTK ve AB-İTK yöntemleri

birbirlerinin eksikliklerini tamamlayacak şekilde son işlem evresinde bir araya getirilmiş

ve önerilen bu yeni yöntem karar-düzeyinde Hibrid-İTK (Hibrid-İTKKD) yöntemi olarak

adlandırılmıştır. Ayrıca, otomatik olarak en iyi şekilde ayarlanmış hibrid bir sonuç

üretmek için öznitelik-düzeyinde Hibrid-İTK (Hibrid-İTKOD) yöntemi önerilmiştir.

Önerilen bu İTK yöntemlerinin başarısı, literaturde kriter olarak kabul edilen

RobotCar Seasons ve Malaga Downtown veri setleri üzerinde sınanmıştır. Ayrıca

Malaga Streetview Challenge veri seti, çeveresel ve referans noktasındaki değişimlerin

etkisini gözlemleyebilmek adına özel olarak bu çalışma için, Malaga Downtown ile aynı

güzergahdaki Google Streetview imgelerinin bir araya getirilimesi ile oluşturulmuştur.

Yeni oluşturulan veri seti bu alanda çalışan araştırmacılar için yararlı olacaktır. Önerilen

Hibrid-İTKKD yöntemi ile RobotCar Seasons ve Malaga Streetview Challenge veri

setleri üzerindeki konumlandırma başarısı, sırası ile 1.6% - 4.5% Top-1 recall@5, ve 4%

- 5.4% recall@1 oranlarında artırılmıştır. Ek olarak, önerilmiş olan hiper-parametre (W)

tabanlı Hibrid-İTKKD yaklaşımının güvenilirliği hemen hemen aynı deneysel sonuçların

Hibrid-İTKOD tarafından elde edilmesi ile desteklenmiştir.
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CHAPTER 1

INTRODUCTION

Information on location of a mobile device (could be a pedestrian or a vehicle) is

critical for city-scale navigation and other location-based services. Generally, Inertial

Measurement Unit (IMU) or Global Positioning Systems (GPS) are used for navigation

and localization tasks. However it is a known fact that GPS may not be activated in some

cases because of various environmental factors like dense vegetation and structures,

tunnels, military zone etc. One of the well-defined but extremely challenging state of the

art solution against this inability is Visual Localization (VL). This problem will shortly

be defined with that question: "Given an image taken in a known environment, can an

agent geographically localize itself?". From image retrieval point of view, the task is

retrieving the best matching images among the geographically labeled (Geo-Tagged)

reference images for a given query image. Owing to known localization information of

the retrieved best image we will determine the location of the query image. Visual

recognition is also a growing research field, as evidenced by dedicated workshops in

renowned international conferences of computer vision. One reason to this ongoing

interest is its potential use in autonomous vehicles.

1.1. Motivation of the Study

Many articles and studies have mentioned difficulties that changing long-short

term conditions have brought into VL. Achieving a stable visual place recognition can be

difficult due to different type of challenges; drastic changes will occur on the same scene

(Fig. 1.1), different places may look very similar known as perceptual aliasing, kinds of

distortions like shining, and places may not always be revisited from the same viewpoint

as before. In order to evaluate the algorithms that attack these problems, valuable VL

benchmark data sets served in numerous studies (Blanco-Claraco et al., 2014;

Carlevaris-Bianco et al., 2016; Maddern et al., 2017; Sattler et al., 2018) that include all
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these mentioned challenges for a driving scenario. Thus, the proposed (Hybrid-VL)

methods are evaluated on most often used Robotcar Seasons and Malaga Downtown

benchmark data sets like they are used in many recent studies (Germain et al., 2018;

Naseer et al., 2014; Piasco et al., 2019; Seymour et al., 2018; Stenborg et al., 2018).

Also, additional test set including street-level driving images is collected from Google

Streetview on the same path of Malaga Downtown in order to observe impact of

long/short term environmental and wide-viewpoint changes. Moreover, this newly

generated test set based on Malaga Urban (Blanco-Claraco et al., 2014) data set will be

useful to the community of VL area.

Previous studies on VL commonly has expressed an image with local descriptors

(LD) that is created from points of interest, such as SIFT (Lowe, 2004), SURF (Bay

et al., 2006), FAST (Rosten and Drummond, 2006), Harris (Harris et al., 1988), BRIEF

(Calonder et al., 2010) etc.. And also, another frequently used descriptor extraction

technique is holistic(general) descriptors, such as GIST (Oliva and Torralba, 2006),

HOG (Dalal and Triggs, 2005) etc. in which images are expressed as a whole. Latest

examples of effective VL studies gain their success by using improved version of LD’s

(Disloc (Arandjelović and Zisserman, 2014), VLAD (Jégou et al., 2010), DenseVLAD

(Torii et al., 2015)) and their CNN modeled versions which are supported by deep

learning. So that in this study, images are represented with localization aware descriptors

that use CNN based NetVLAD (Arandjelovic et al., 2016) model and NetVLAD based

LD-VL. These approaches are accepted as baseline methods.

While comparing the similarity of images in VL task a question that may initially

arise is; we make comparison in which space? From the side of this question, while

some VL studies make comparison in two-dimensional image space (2D-2D Matching),

on the other hand there are also studies that firstly construct the 3D model of the

localization map then make comparison between 3D points of reconstructed scene and

2D points of perspective image (2D-3D Matching). Also these 2D-3D Matching and

3D-3D Matching methods will be named as a structure-less and structure-based

localization respectively. There are several studies (Radenović et al., 2016, 2018) using

3D structure-based localization with many frequently used LD methods (Cao and

Snavely, 2014; Irschara et al., 2009; Sattler et al., 2015, 2012; Zeisl et al., 2015).
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However 2D-2D Matching approaches still keep their popularity using several advanced

LD (Arandjelovic et al., 2016; Arandjelović and Zisserman, 2014; Perronnin and Dance,

2007; Sattler et al., 2016; Torii et al., 2015). These approaches owe their popularity to be

less costly in comparison with 2D-3D matching based approaches with almost equally

successful results. These reasons are widely explained in the following two works.

Camposeco et al. (2018) focused on to solve the pose estimation problem of calibrated

pinhole and generalized cameras w.r.t. a Structure-from-Motion (SfM) model. They

compared both 2D-3D correspondences as well as 2D-2D correspondences. Absolute

pose approaches are limited in their performance because of the quality of the 3D point

triangulations and the structuring accuracy of the 3D model. On the other side, relative

pose approaches are more accurate, also they tend to be far more computationally costly

and often return dozens of possible solutions. In order to cope with this trade-off they

propose a new RANSAC based approach. By this way they manage automatically

choosing the best type of solver to use at each iteration in a data driven way. These

RANSAC based solvers can range from pure structure-based or structure-less solvers, to

any possible combination of hybrid solvers (i.e. using both types of matches) in between.

A number of these new hybrid minimal solvers are also presented in this paper.

Consequently both synthetic and real data experiments approve their approach to be as

accurate as structure-less approaches, while staying close to the efficiency of

structure-based methods. Torii et al. (2019) emphasized the trade-off between structured

and structure-less VL methods and its importance in autonomous navigation. In their

paper, authors demonstrated experimentally that large-scale 3D models are not strictly

necessary for accurate visual localization and they created reference poses for a large

and challenging urban data set. They showed that combining image-based methods with

local reconstructions results in a pose accuracy similar to recent structured methods. So

that, their results suggest that we might want to reconsider the current approach for

accurate large-scale localization. Under the light of these examined studies above, we

adopted the proposed method in 2D-2D matching space which is less expensive than a

structured one with almost equally successful performance.

Secondly, the following question may come to mind; how we can perform this

similarity comparison in an efficient way? After analyzing studies including both
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approaches (2D-2D Matching & 2D-3D Matching), since the geographic location of the

retrieved database image serves as an approximate position of the query image, it is clear

that we must apply robust descriptor matching method as a core step of VL. In this

context, efficiency of using Approximately Nearest Neighborhood search (ANNS)

method for high-dimensional data matching is highlighted in several studies (Muja and

Lowe, 2009b, 2014). Therefore in this study Fast Library for Approximate Nearest

Neighbors (FLANN (Muja and Lowe, 2009a)) tool is employed in order to retrieve the

most similar images.

Figure 1.1. Importance of semantic segmentation against appearance changing.

Semantic segmentation of an image will be more stable than standard LD

approaches against considerable illumination and seasonal changes as depicted in Figure

1.1. On the left side of this figure, two images of the same scene with considerable

illumination and seasonal changes are displayed. On the right side, their semantic

segmentation results are illustrated. Standard methods (LD based) have low performance

for such cases, where more stable semantic segmentation can help. There are studies in

which semantic information in an image is used in order to improve localization

performance differently from this thesis. Ondruska et al. (2016) incorporated the
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semantic segmentation to city-scale tracking task with a different kind of Neural

Network (NN). In their work they proposed a novel recurrent NN architecture which

filters laser measurements to make inference on location of a object in both visible and

occluded areas. Singh and Košecká (2012) produced a hand-crafted descriptor after

semantic segmentation of images, and they used this descriptor for grouping the scenes

such as on a street, in front of a building or at a crossroads. In another LD based study,

Mousavian et al. (2015) eliminated local descriptors of objects (e.g. trees) that do not

come from man-made structures by using extracted semantic labels. Thus, they increased

the wights of features coming from man-made structures compared to non man-made

structures since natural structures have low chance of healthy matching. In his another

work (Mousavian and Kosecka, 2016), for each query image researchers identified which

buildings are in the image as well as the orientation of building facades by means of

semantic segmentation. Then they used the identity of the buildings and orientation of

building facades and the map, in order to find the probability distribution for the location

of image. There are also studies (Schönberger et al., 2018; Stenborg et al., 2018; Toft

et al., 2018) that incorporated structure-based (2D-3D) approach with semantic

information. In first example of semantic clues based 2D-3D matching study (Toft et al.,

2018), accuracy of image matching was also checked semantically. In another work

using 3D scene reconstruction, Schönberger et al. (2018) prepared a dictionary for

semantic content and expressed the scene as bag of features (BOF) for this reconstructed

scene. Also Stenborg et al. (2018) considered the problem of visual localization against

logn-term changes in the context of 2D-3D matching space. They managed to label an

environment semantically with its all corresponding points by means of semantically

segmented images. Then they demonstrated that a vehicle localization without the need

for detailed feature descriptors (SIFT, SURF, etc.) will be achieved by efficient usage of

labeled 3D point maps. In this way, instead of depending on hand-crafted feature

descriptors, they discussed on the training of an image segmenter. In these similar

studies, semantic cues were used to improve localization performance, however study is

the first to perform localization with direct usage of semantically segmented images.
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1.2. Contributions of the Thesis

The contributions of this thesis study are provided below:

• Firstly, semantic information is extracted from equally divided parts of

semantically segmented images as a novel hand crafted semantic descriptor (SD)

for VL in 2D-2D matching space which is called as non-learnt SD-VL. Differently

from the first one, a new SD is trained with a CNN model including NetVLAD

(Arandjelovic et al., 2016) layer using semantically segmented images as an input,

then this captured semantic representation is used directly for VL that is named as

learnt SD-VL method. Both query and database images are segmented by

applying the up-to-date CNN based semantic segmentation method (DeepLabv3+

(Chen et al., 2018)) invented by Google Research. Also, all proposed localization

approaches are based on 2D-2D image matching and their semantic segmentation

results. It is much cheaper than the approaches that require the semantic 3D

reconstruction of the environment (Schönberger et al., 2018; Stenborg et al., 2018;

Toft et al., 2018).

• Secondly, fine tuned Hybrid-VLDL is proposed to combine the proposed SD-VL

and the baseline LD-VL methods in post-processing stage. Also Hybrid-VLFL that

is based on NN trained with triplet loss is proposed in order to produce

automatically tuned hybrid result. Improved localization performances are

measured with a frequently used evaluation metric; which computes percentage of

queries correctly located under changing distance (meter) thresholds for changing

top N retrieved images.

1.3. Organization of the Thesis

In Chapter 2, different approaches on VL are broadly examined individually

within the scope of descriptor types, descriptor matching algorithms, benchmark data
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sets and on the subject of semantic representation context. Also necessary background

and literature review are given in this chapter.

Implementation details of the proposed method is explained in Chapter 3. Firstly,

preparation of newly generated Malaga Streetview Challenge data set is described.

Secondly different semantic segmentation methods are compared. After that in

accordance with the purpose of this study, adoption of SD-VL method trained with

semantically segmented image and generation of proposed decision/feature-level

Hybrid-VL methods are introduced. In Chapter 4, used evaluation metric is described

firstly, then experimental results are presented with kinds of case studies. Finally, the

conclusion and future work of this thesis is given in Chapter 5.
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CHAPTER 2

BACKGROUND AND REVIEW OF LITERATURE

In the literature there are different approaches on VL. Image based localization is

the subject of different application areas which may take place in outdoor or indoor

environments. These areas will be exemplified such as automotive industry, tourism,

health care, safety and visual surveillance. Although there are some works for indoor

environment, majority of these researches have concerned with outdoor environment

especially for autonomous vehicles. Basically, a typical image retrieval based VL task

for outdoor environment will be demonstrated with Figure 2.1. The task is defined as

Figure 2.1. On the left, we see a query image. On the right, we see a district with

a database of images with known GPS coordinates. Retrieval from the

database is based on the similarity of descriptor vectors. The GPS location

of the image retrieved from the database serves as the position estimate of

the query image. If a correct match is retrieved, then the localization is

successful.
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retrieving the best matching images among the geographically labeled (Geo-Tagged)

database images for a given query image. This challenging job is mainly achieved by

combination of these two stages: image representation and image matching. Also note

that, in a characteristic VL system the localization path which is illustrated by green lines

in Figure 2.1 is already given as a database image collection which is named as prior

map. Considerable improvements in VL have been recorded in the last decade especially

thanks to the usage of deep learning techniques. Therefore recent works generally use

trainable LD based descriptors to represent images and ANNS for image matching.

Description of these techniques are detailed with referenced studies in the

following subsections. For a clear understanding, literature review is organized

according to these sub-contexts; descriptor types, descriptor matching algorithms,

benchmark data sets and semantic knowledge usage respectively.

2.1. Descriptor Types

Description techniques in VL are divided into two main categories: those that

determine the interesting points of an image then just concentrates on them; and others

that describe the whole scene, without a determining process. One example of the first

category is Scale-Invariant Feature Transforms (SIFT (Lowe, 1999, 2004)), and in this

study distinctive invariant features were extracted from images which also can be used to

carry out reliable matching between changing views of an object or scene. Thanks to the

these scale and rotation invariant features, image matching becomes more robust against

change in 3D viewpoint, affine distortion and change in illumination. All these valuable

properties makes this descriptor highly distinctive, in the sense that a single feature can

be correctly matched with high probability against a large database of features from

many images. This paper also showed up a new method to use these features for object

recognition. This recognition is performed by robust nearest-neighbor algorithm based

matching between single features and features collection comes from known objects.

Then they operated Hough transformation to find out clusters belonging to a single

object. At the last step, verification by least-squares solution for consistent pose
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parameters is performed. Therefore, this approach provides us robust object

identification among collection with near real-time performance for a recognition task.

Bay et al. (2006) presented the another commonly used scale and rotation

invariant local feature descriptor named as SURF (Speeded-Up Robust Features). This

feature approximates or even outperforms previously proposed LD descriptors with

respect to repeatability, distinctiveness, and robustness, despite it can be computed and

matching much faster. This improvement is managed by trusting on integral images for

image convolutions. In a more detailed definition, they build this descriptor on

successful existing detectors (Hessian matrix-based measure for the detector) and a

descriptors (distribution-based descriptor) by simplifying these methods. Finally,

superiority of their method - combination of novel detection, description, and matching

steps- is demonstrated in the context of a real-life object recognition application.

Additionally there have been many other LD like Harris Corner Detector (Harris

et al., 1988), FAST (Rosten and Drummond, 2006), BRIEF (Calonder et al., 2010) and

ORB-BRIEF (Rublee et al., 2011) which have been proposed for efficient image

comparison. We know that, LD’s first need a detection process which finds the

interesting points of the image to accept as local features. In contrast, global image

descriptors such as Gist (Oliva and Torralba, 2001, 2006) do not have a detection phase

but process the whole image regardless of its content. This difference in their processes

makes these descriptors have different advantages and disadvantages. LD’s can also be

combined with metric information to give capability of metric corrections for

localization (Andreasson and Duckett, 2004; Davison et al., 2007; Konolige and

Agrawal, 2008). On the other side, global descriptors do not have the same usability, and

furthermore, whole-image descriptors are more vulnerable against a changing in robot’s

pose than local descriptor methods, because whole-image descriptor comparison

methods tend to assume that the camera viewpoint remains similar. In order to tackle

with this problem, Milford and Wyeth (2008) performed circular shifts, also a solution

by combining a bag-of-words approach with a Gist descriptor method was proposed in

different studies (Murillo and Kosecka, 2009; Murillo et al., 2012). Whole-image

descriptors are more pose dependent than LD’s, despite that LD perform poorly against

changing lighting conditions (Furgale and Barfoot, 2010) and are comprehensively
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outperformed by global descriptors at application of place recognition in changing

conditions (Milford and Wyeth, 2012; Naseer et al., 2014). Starting from incorporating

the known shortcomings of both descriptor types, McManus et al. (2014) applied the

well known global descriptor HOG (Dalal and Triggs, 2005) on segmented parts of an

image to learn condition invariant scene signatures. They firstly divided a image into

segments than employing this whole image descriptor on them. By this way they

managed to combine conditional in-variant power of global descriptor with pose

in-variant power of local features.

Under the light of comparison between local and global descriptors in the previous

paragraphs, foremost works have preferred to construct their VL structure on LD’s and

their developed versions as analyzed in this paragraphs. We should note that, using LD’s

in BOF (Bag Of Features) approach is the classical way for representing a image in VL

task.

The BOF approach groups LD’s for representing an image. In this approach,

firstly a dictionary which includes k number of “visual words” is defined. This definition

is usually performed by k-means clustering method. LD’s that comes from all images are

assigned to the closest centroid, then histogram of the assignment of all image

descriptors to visual words provides the BOF representation. As a result, k-dimensional

vector is generated that is subsequently normalized and also kinds of histogram

normalization methods are introduced. BOF vector is generally normalized using the

Manhattan distance, other common choice is Euclidean normalization. Then,

components of gained vector are weighted by idf (inverse document frequency)

calculation with a different type of weighting scheme (Nister and Stewenius, 2006; Sivic

and Zisserman, 2003). Moreover, there are developed version of BOF methods (Philbin

et al., 2008; Van Gemert et al., 2009) that operates soft quantization technique instead of

k-means. Jaakkola and Haussler (1999) introduced a new powerful tool in order to

transform an incoming variable-size set of independent samples into a fixed size vector

representation. As an advance version of Fisher kernel, Perronnin and Dance (2007)

carried out it in the context of image classification. They model the visual words with a

Gaussian mixture model, restricted to diagonal variance matrices for each of the k

components of the mixture.
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Also there are hand-crafted LD’s based enhanced descriptors which are especially

constructed for VL task. Disloc (Arandjelović and Zisserman, 2014; Aubry et al., 2014)

is a state-of-the-art method based on the BOF representation and Hamming embedding

(Jegou et al., 2008). Disloc uses the density of the Hamming space in order to give less

weight to features which is found on repeating structures while keeping the impact of

unique features. Some works combined Disloc descriptors with the geometric burstiness

weighting scheme (Sattler et al., 2016) for usage in VL. However, Disloc is based on the

BOF paradigm and therefore it needs to store an entry for each image feature in an inverted

file. As a result of this necessity, representation leads to large memory requirements for

large-scale scenes.

In order to struggle with this inefficiency, Jégou et al. (2010) proposed a novel

representation: vector of locally aggregated descriptors which is named as VLAD. They

addressed the problem of searching the most similar images in a very large image database

(ten million images or more). And they underlined the incapability of both BOF and

LSH (Locality Sensitive Hashing)(Kulis and Grauman, 2009) approaches against such a

large scale image searching scenario. Also it was mentioned in their study, limited small

vocabulary sizes of BOF technique will yield lower search accuracy. Differently from

these disadvantages, VLAD optimizes these three constraints: the search accuracy, its

efficiency and the memory usage of representation and these optimizations were achieved

by means of the given three steps below:

1. Compose local image descriptors into a compact vector.

2. Reduce the dimension of these vectors in the best way.

3. Apply an efficient indexing methodology for searching.

On behalf of the first step, they actually combined the BOF and Fisher kernel

(Perronnin and Dance, 2007), and managed to obtain a compact representation by

aggregating the SIFT descriptors. In other words they simplified the Fisher kernel

method with BOF paradigm.

In BOF approach, firstly a dictionary C = {c1 , ...ck} including k visual words is

generated via k-means. Then each local descriptor x is assigned to its nearest visual word
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ci = NN(x). The main objective of the VLAD descriptor is collecting the differences

x − ci of the vectors where x assigned to ci, and this collection is operated for each

visual word ci. By this way distribution of the vectors with respect to the center is built

up and dimension D of this representation becomes D = k x d with a d-dimensional

local descriptor. Now VLAD descriptor will be represented with vi,j , where the indices

i = 1 ... k and j = 1 ... d respectively index the visual word and the local descriptor

component. As a result of these assumption, we will acquire a component of v as a sum

over all the image descriptors:

vi,j =
∑

x such thatNN(x)=ci

(xj − ci,j ) , (2.1)

where xj denotes the jth component of the descriptor x and ci,j denotes the same

component in its corresponding visual word ci. Then this v vector is L2 -normalized by

v := v/||v||2 as a post-process. The VLAD representations associated with a few images

are visualized in Figure 2.2, that aggregates 128-dimensional SIFT descriptors. The

components of given descriptors are depicted like a SIFT descriptors, in other words

each 16 components in vi = 1..k corresponds to 4 x 4 spatial grid representation of

oriented gradients. In this sample, descriptors are accumulated in 16 of them, one per

visual word. Note that, the subtraction operation in Equation 2.1 makes a component

may be negative differently from a SIFT descriptor. These negative components are

depicted with red on this figure. Next in terms of 2nd and 3rd steps, they solved the

dilemma between the dimensionality reduction and the indexing by optimizing these

phases jointly. Finally, they also demonstrated the superiority of VLAD against standard

BOF for the same size.

The DenseVLAD descriptor (Torii et al., 2015) is an another example for a

state-of-the-art VL algorithm which is extended on VLAD. Images are represented by

densely sampled VLAD vector (Arandjelovic and Zisserman, 2013; Jégou et al., 2010;

Kendall and Cipolla, 2017), resulting in a more compact representation of reference

images. The DenseVLAD descriptor is also based on SIFT descriptor which actually

aggregates RootSIFT (Arandjelović and Zisserman, 2012) descriptors densely sampled
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Figure 2.2. Images and corresponding VLAD descriptors, for k=16 centroids result

in compact vector D=16x128. The components of the descriptor are

represented like SIFT, with negative components in red which caused from

the Equation 2.1 (Jégou et al., 2010).

on a regular grid in each image. By the way, contribution of using DenseVLAD in

feature detection phase of image retrieval is showed up, especially in the presence of

strong illumination changes (Torii et al., 2015).

Recently, we have witnessed the tremendous growing impact of deep learning

techniques for several research areas. As a reflection of this fact, several studies

proposed types of CNN based trainable descriptors for their VL applications. Trade-off

between usage of global and local features are already mentioned in the previous parts,

Sünderhauf et al. (2015) overcomes this dilemma by using the Edge Boxes object

proposal method (Zitnick and Dollár, 2014) combined with a mid-level convolutional

neural network (CNN) feature (Krizhevsky et al., 2012) to identify and extract

landmarks. These proposed methods serve us an ability of just looking into valuable

parts of image. Furthermore in their latter works, they (Sünderhauf et al., 2015)

compared the success of VL with respect to trainable descriptors which were extracted

from the different layers of a CNN network. Robustness of different layers in VL was
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especially considered against the wide viewpoint changes. On the other hand there are

studies in which task oriented trainable descriptors are directly described and these are

generally trained with Triplet Loss (Schroff et al., 2015). A typical Triplet Loss

minimizes the distance between an anchor and a positive, both of which have the same

identity, and maximizes the distance between the anchor and a negative of a different

identity. Also, many works benefit from same Triplet Loss training procedure for VL

task into 2D-3D matching space. Radenović et al. (2016) proposed to fine-tune CNN for

image retrieval from a large collection of unordered images in a fully automated manner.

They provide state-of-the-art retrieval and Structure-from-Motion (SfM) methods to

obtain 3D models, which are used to guide the selection of the training data for CNN

fine-tuning. They demonstrated that object retrieval performance will be enhanced with

contribution of both hard positive and hard negative examples. In another study

(Radenović et al., 2018), a novel trainable Generalized-Mean (GeM) pooling layer was

proposed. This layer generalizes max and average pooling and show that it boosts

retrieval performance on a well-known benchmarks: Oxford Buildings, Paris, and

Holidays data sets. Differently from VL task Radenovic et al. (2018) introduced shape

matching as metric learning with Triplet Loss based convolutional networks. On the

other hand, one and foremost used method into 2D-2D matching space, that also benefits

from same Triplet Loss for VL task, is NetVLAD (Arandjelovic et al., 2016). NetVLAD

representations uses a CNN to learn the descriptors that are aggregated into a VLAD

descriptor. They introduced the following three principal contributions. Initially, a CNN

architecture is developed that is trainable in an end-to-end manner directly for the VL

task. Second, they developed training procedure in order to learn parameters of the

architecture in an end-to-end manner from images which representing the same places in

different time. They achieved this learning owing to their new weakly supervised ranking

loss. Finally, they have figured out the improving place recognition performance over

DenseVLAD and other compact image descriptors on two challenging VL benchmarks.

All these reasons make NetVLAD the most preferred LD based descriptor as a baseline

VL method, thanks to the its grand success against changing environmental conditions.
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2.2. Descriptor Matching Approaches

Performing an efficient image comparison emerges as one of the most important

steps of a characteristic VL system. With respect to this importance, different types of

ANNS methods (Andoni and Indyk, 2006; Beis and Lowe, 1997; Bentley, 1975) are

firstly introduced in order to handle large databases in computer vision applications.

These methods look for the approximate nearest neighbors instead of exact nearest

neighbors with different types of techniques. One of the frequently used techniques is

Euclidean Locality-Sensitive Hashing (Datar et al., 2004), which has been extended in

(Kulis and Grauman, 2009) to arbitrary metrics. But, these approaches are memory

consuming, as several hash tables are required. In order to cope with this inefficiency,

Weiss et al. (2009) tried to satisfy the memory constraint by embedding the vector into a

binary space. However from the aspect of accuracy and memory trade-off, their method

becomes unsuccessful against product quantization-based approximate search method

which is proposed by Jegou et al. (2010). Moreover, superiority of using k-dimensional

(k-d) trees in ANNS approach is highlighted in numerous works and its variants (Jo

et al., 2017; Silpa-Anan and Hartley, 2008) have been proposed for different computer

vision task. In order to cope with high dimensional feature matching in more efficient

way, Muja and Lowe (2009b, 2014) randomized these k-d tress and named as multiple

randomized k-d tress. In addition, they also mapped their new method into a compact

tool that is called fast library for ANNS (FLANN (Muja and Lowe, 2009a)).

In this study, all the performed LD and SD based VL methods were constructed

on FLANN to retrieve the most similar database image for a given query. Employing

FLANN in feature matching needs collection of same dimensional descriptors for both

database (prior map) and query images individually, this concatenated collection will be

defined in a matrix form like given below:

• k: is the number of nearest neighbors to be returned for a given descriptor.

• d x n: is a descriptor matrix of database images which contains n number of d-

dimensional descriptors, stored in a column-major order.

• d x m: is a descriptor matrix of query images which contains m number of query
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descriptors whose k-nearest-neighbors need to be found.

• k x mngh: is a result matrix that contains indexes (among d x n) of the returned k

number of nearest neighbors for a given m number of query descriptors.

• k x mdist: is a distance matrix that contains euclidean distances (L2 Norm) between

returned k number of nearest neighbors and their corresponding query descriptors.

First of all, FLANN builds a powerful index on our database descriptors ‘d x n’ by

means of multiple randomized k-d tress. Then performs ANNS for each of given query

descriptor in ‘d x m’ by using this already created index. Finally, FLANN returns these

two matrices k x mngh and k x mdist which are in the same size. The first one gives

returned k nearest candidates for a given m number of query descriptors, which was used

for performing the whole image matching phases in this study. Second one provides us

the euclidean distance (L2 Norm: square root of summed squared difference) between

these returned candidates and their corresponding query images. As a result, the k x

mngh matrix is employed for image matching phase of proposed methods, on the other

side k x mdist is especially used in generation of the Hybrid-VLDL method as described

in Section 3.5.1. Also while practicing the FLANN in this study, a valuable result was

deducted: the accuracy of FLANN will change with respect to applied number of

randomized trees. This fact is approved with comparing standard euclidean distance

computation. Therefore in the implementation of proposed method high numbers of

randomized trees parameter for high dimensional SD and LD descriptor is operated.

Also note that, all these previous studies mentioned above were operated on

perspective images taken with monocular cameras. As a unusual perspective, different

type of omnidirectional cameras are also preferred (Goedemé et al., 2004, 2007;

Lhuillier, 2005, 2007; Murillo et al., 2010; Singh and Kosecka, 2010) for image

matching in order to take advantage of their wide field of viewpoint. Although, using

these type of cameras will increase the effectiveness of comparing phase, conversely it

causes a extra computational cost. Because of this extra effort, which is spent for

determining the suitable slice in an omnidirectional image, recent efficiency oriented VL

approaches (Majdik et al., 2015; Schroth et al., 2011) would prefer using ANNS with

perspective images as being in this work.
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2.3. Benchmark Data Sets

Although there are some VL works (Choi et al., 2015; Fraundorfer et al., 2007;

Furnari et al., 2016; Goedemé et al., 2004, 2007) performed in indoor environment,

majority of these researches concentrate on outdoor environments especially for urban or

sub-urban areas. In contrast to indoor environment studies, outdoor environment studies

are in need of well organized data sets with many requirements. Moreover, a new

outdoor VL method must be evaluated against changing lon-short term conditions. In

line with this necessities, challenging outdoor street-level-driving data sets (Table 2.1)

for VL task are described in the following parts.

Table 2.1. Comparison of benchmark VL Data sets for normal field of view cameras.

Data set Setting
Image

Capture

# Images Condition Changes

Database Query Weather Seasons Day-Night

RobotCar(Maddern et al., 2017) Urban Trajectory/short baseline 20 billion X X X

Malaga Downtown(Blanco-Claraco et al., 2014) Urban Trajectory/no baseline 62886

Aachen Day-Night(Sattler et al., 2018) Historic City Free Viewpoint (mobile) 4328 922 X

CMU Seasons(Sattler et al., 2018) Suburban Trajectory/short baseline 7159 75335 X X

RobotCar Seasons(Sattler et al., 2018) Urban Trajectory/short baseline 6954(rear) 3978(rear) X X X

Malaga Streetview Challenge(ours) Urban Trajectory/wide baseline 1571(rear) 436(rear-streetview) X X

Maddern et al. (2017) proposed a challenging new data set named as Oxford

RobotCar Data set which represent a driving scenario. They drove on the same path

through central Oxford in different time period from 2014 to 2015. By this way, 20

million images were collected from 6 cameras mounted to the vehicle as well as with

LIDAR, GPS and INS ground truth. Images were collected in all weather conditions,

containing heavy rain, night, direct sunlight and snow. During the collection period,

there are also many long-term changes on the roads and buildings occurred. As a result,

they managed to investigating long-term localization and mapping for autonomous

vehicles in real-world thanks to their frequent traversing. Also their full data set is

available at: http://robotcar-dataset.robots.ox.ac.uk.

Carlevaris-Bianco et al. (2016) mentioned that, previous work on VL has

generally focused on perspective images, in their paper large scale and long-term
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autonomy data set for robotic researches was collected on the University of Michigan’s

North Campus with omnidirectional cameras and named as North Campus Long-Term

(NCLT) data set. Additional to omnidirectional imagery, also 3D lidar, planar lidar, GPS

information is available thanks to their fully equipped robot. The data set was collected

to facilitate research focusing on long-term autonomous operation in changing

environments. They captured 27 traversals both for indoors and outdoors which is

captured in different conditions (times of a day) among 15 months. Therefor thanks to

this configuration, many challenging elements including: moving obstacles, changing

lighting, varying viewpoint,seasonal and weather changes, and long-term structural

changes could be captured with this data set.

Blanco-Claraco et al. (2014) pointed on the lack of publicly accessible data sets

with a reliable ground truth and the difficulty of creating Malaga Urban data set. For

this aim, they addressed both the practical and theoretical issues found while building a

collection of six outdoor data sets. Among these six collections Malaga Downtown is

the most suitable one with its nearly 8km route for our work. This sub set was collected

with kinds of sensors, including laser scanners and one stereo camera (Bumblebee2) in

urban driving scenarios. One distinctive feature of the present data set is the existence of

high-resolution stereo images [1024 X 768] grabbed at high rate (20fps) during driving,

turning the data set into a suitable benchmark for VL techniques. Both plain text and

binary files are provided which include corresponding GPS data.

Sattler et al. (2018) considered the problem of inconsistency between the

previously created VL data sets. Under the light of this deficiency, they generated the

sub version of frequently used driving data sets in context of changing environmental

conditions. Also they underlined that, a practical visual localization approaches need to

be robust to a wide variety of viewing condition, including day-night changes, as well as

weather and seasonal variations, while providing highly accurate 6 degree-of-freedom

(6DOF) camera pose estimates. Under the light of this aim, they introduced the first

benchmark data sets specifically designed for analyzing the impact of such factors on

visual localization. They carefully created ground truth poses for query images taken

under a wide variety of conditions. Next on, the impact of various factors on 6DOF

camera pose estimation accuracy through extensive experiments was evaluated with
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state-of-the-art localization approaches. This data set contains high resolution

[1024X1024] images recorded with three synchronized global shutter Point Grey

Grasshopper2 cameras mounted to the left, rear, and right (triplet) from an autonomous

vehicle platform over 12 months in Oxford, UK. Each traversals were recorded on the

same 10km route, among these provided 10 traversals one of them was selected as

reference traversal in overcast conditions and rest of them were used as query traversals

that cover a wide range of conditions (Table 3.1). For each sub set highly accurate 6

degree-of-freedom (6DOF) camera pose estimation and GPS data are also provided.

Also they introduced another two data sets present different challenges. The Aachen

Day-Night data set focuses on localizing night-time photos against a 3D model built

from day-time imagery and images are taken with hand-held cameras with wide

viewpoints changes. CMU Seasons data sets represent automotive scenarios, with

images captured from a car. This data set exhibits less variability in viewpoints but a

larger variance in viewing conditions like RobotCar Seasons data set. In contrast, the

CMU data set is collected in sub-urban areas that contains a significant amount of

vegetation. As a result they showed that long-term localization is far from solved, and

proposed promising avenues or future work, including sequence-based localization

approaches and the need for better local features. Their benchmark is available at

visuallocalization.net (Sattler et al., 2018).

Based upon the detailed comparison on literature, Table 2.1 demonstrates that

RobotCar Seasons (Sattler et al., 2018) data set is the most suitable one for this study.

Because this data set especially design for VL challenge derived from more dense

Oxford RobotCar (Maddern et al., 2017) data set. And differently from the other

examined data sets, it becomes pointed with its ‘Setting: Urban’ and ‘Condition

Changes: All’ properties as given in this table. Also recent works support this

preference, state of the art VL approaches (Germain et al., 2018; Piasco et al., 2019;

Seymour et al., 2018) prove their success on RobotCar Seasons data set. Furthermore the

necessity of data set which simultaneously provides us ‘Condition Changes: all’, ‘Image

Capture: Trajectory/wide baseline’ and ‘Setting: Urban’ properties is figured out in this

same table. Therefore in addition to RobotCar Seasons data set, we generate a Google

Streetview based Malaga Streetview Challenge data set which supplies all these
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underlined necessity simultaneously. This new data set was derived from Malaga

Downtown (Blanco-Claraco et al., 2014) and its generation phase is explained in Section

3.1.1.

Consequently, all proposed methods in this study are examined on this two data

set RobotCar Seasons and Malaga Streetview Challenge. Moreover many other street-

level driving data sets are proposed for different tasks like image segmentation. Hereby,

Camvid (Cambridge Labeled Objects in Video) data set (Fauqueur et al., 2007) stands out

as a very sufficient and frequently used segmentation data set among the others (Cordts

et al., 2016; Gaidon et al., 2016) that helps us while training our semantic segmentation

model in this study.

2.4. Semantic Representation

Currently, we see that deep learning methods surpass traditional approaches in

many tasks of computer vision and natural language processing in terms of accuracy and

sometimes even efficiency (Tekir and Bastanlar, 2020). Semantic segmentation is also

one of these computer vision tasks. As a short definition, these semantic segmentation

methods transformed those existing and up-to-date classification models – AlexNet

(Krizhevsky et al., 2012), VGG (16-layer net) (Simonyan and Zisserman, 2014),

GoogLeNet (Szegedy et al., 2015),and ResNet (He et al., 2016) – into fully convolutional

networks (FCN) by replacing the fully connected layers with convolutional ones in order

to output spatial maps instead of classification scores. Then dense per-pixel labeled

outputs are produced by upsampling those maps. This upsampling process also named as

deconvolutions (Zeiler and Fergus, 2014; Zeiler et al., 2011). A typical semantic

segmentation Convolutional Neural Networks (CNN) consists of encoder and decoder

phases. SegNet (Badrinarayanan et al., 2017) specializes with its decoder phase. In

detail, decoder stage of SegNet is constructed on a set of upsampling and convolution

layers. Pixel-wise labeled image is produced using softmax classifier as an output which

has the same resolution as the input image. Note that each upsampling layer in the

decoder stage corresponds to a max-pooling one in the encoder part. Those layers
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upsample feature maps using the max-pooling indices from their corresponding feature

maps in the encoder phase. After hat, dense feature maps are produced by convolving

the upsampled maps with a set of trainable filter banks. Feature maps are fed to the

softmax classifier to produce the final segmentation when they have been restored to the

original resolution. As a different CNN based segmentation approach, the DeepLab

models (Chen et al., 2014, 2017, 2019) uses a fully connected CNN structure which is

firstly introduced by Krähenbühl and Koltun (2011, 2013). They refine the segmentation

result by using this fully connected structure which is separated in post-processing step.

As a first step they models each pixel as a node in the field, then one pairwise term is

employed for each pair of pixels no matter how far they lie. In shortly, they renders the

system able to recover detailed structures in the segmentation that were lost due to the

spatial invariance of the CNN by considering the both short and long-range interactions.

In addition, its recent version of DeepLabv3+ (Chen et al., 2018) is also available.

Besides all these semantic segmentation works, there are studies in which

semantic information in an image is benefited in order to improve localization

performance differently from this thesis. Naseer et al. (2014) claimed that existing

methods generally leverage feature descriptions of whole images or image regions from

Deep CNNs. Also they noted that, there are many other studies that benefit from

sequential information in order to struggle the problem of spatially inconsistent and

non-perfect image matching. Differently from this studies, they achieved to learn a

discriminative holistic image representation which uses the image content to create a

dense and salient scene description. These salient descriptions are learnt over a variety of

data sets under large perceptual changes. Thanks to the their method, segmented regions

of an image are able to captured exactly which are also geometrically stable over large

time lags. Then, they combined features from these salient regions and an off-the-shelf

holistic representation to form a more robust scene descriptor.

Seymour et al. (2018) motivated with that specific scene regions remain stable in

the semantic modality even in the presence of vast differences in the appearance modality.

In their study, they developed a deep learning based method for fusing appearance and

semantic information using visual attention for 2D image- based localization (2D-VL)

across extreme changes in viewing conditions. They operated this fusion in descriptor
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level and their proposed attention-based module learns to focus not only on discriminative

visual regions for place recognition.

Mousavian and Kosecka (2016) drew attention to that, density of the database

images and the robustness of the image representation will directly influence the success

of VL more than the conditional changes. In their work, first a sparse set of geo-tagged

reference views are generated for a map, then they determined camera location and

orientation using this map and reference views. By this way they achieved to localize a

novel view geographically. In this line, they proposed a novel technique for detection

and identification of building facades from geo-tagged reference view using the map and

geometry of the building facades which is obtained from semantically segmented

images. As a last step, they put together the information comes from detected landmark

(building) identities from reference views, 2D map of the environment, and geometry of

building facades in order to compute the likelihood of camera location and orientation of

the query images.

Ondruska et al. (2016) incorporated the semantic segmentation to city-scale

tracking task with a different kind of Neural Network. In their work, they presented a

recurrent neural network based framework in order to classify and track the hardly

observable real-world surrounding of a robot. Their end-to-end trainable model manages

to filter an input stream of laser measurements in order to directly determine object

locations. In short, they provided a new tracking and semantic classification method

owing to their trainable RCNN architecture.

Stenborg et al. (2018) considered the problem of logn-term visual localization in

the context of 2D-3D matching space. They managed to label an environment

semantically with its all corresponding point by means of semantically segmented

images. Then they demonstrated that a vehicle localization without the need for detailed

feature descriptors (SIFT, SURF, etc.) will be achieved by efficiently usage of labeled

3D point maps. In this way, instead of depending on hand-crafted feature descriptors,

they discussed on the training of an image segmenter.

Singh and Košecká (2012) produced a hand-crafted descriptor after semantic

segmentation of images, and they used these descriptors for grouping the scenes such as

on a street, in front of a building or at a crossroads. In another study, Mousavian et al.

23



(2015) in their LD based study, they eliminated local descriptors of objects (such as tree)

that do not come from man-made structures by using extracted semantic labels. Thus,

they increased the wights of features coming from man-made structures compared to non

man-made structures since natural structures have low chance of healthy matching.

Again in an example of semantic clues based 2D-3D matching study [8], accuracy of

image matching was also checked semantically. In an another area in which Semantic

knowledge gained popularity is studies that using 3D scene reconstruction, Schönberger

et al. (2018) prepared a dictionary for semantic content and expressed the scene as bag of

features (BOF) for this reconstructed scene.

24



CHAPTER 3

IMPLEMENTATION OF THE PROPOSED METHOD

In this chapter, methodology of operated approaches is explained. The reasons

behind putting these methods to use in this study had already been given in Section 2 with

a broad comparison. Hereby, after defining working scheme of this proposed method, the

prepared data set variants and implementation details of proposed methods are explained

in the following sections.

Figure 3.1. Proposed semantic content based VL.

Before giving the details of the proposed methodology, semantically aided VL

approach is demonstrated in Figure 3.1 which is also based on image retrieval technique

as previously depicted in Figure 2.1. As it is supposed to be in typical VL studies, our

prior map (red dotted lines) corresponds to reference traversal of the given data sets,

while images of other traversals collected in changing conditions on the same path are

accepted as our query images. Differently from the previous studies, we directly used

the power of semantically segmented images in order to improve performance of any
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state-of-the-art VL method as depicted in this figure. It also should be noted that, this

study will be defined as an implementation of topometric localization, which combines the

robustness of topological localization (roughly localization of the nodes in a graph) with

the geometric accuracy of metric. Therefore localization precision of proposed method

is evaluated in meter threshold as being in state-of-the art VL approaches, which is also

described in Section 4.1.

Proposed Hybrid-VLDL method can be summarized step by step with the given

pseudocode of the proposed Hybrid-VLDL method in Figure 3.2 which is constructed on

semantic content based image retrieval in 2D-2D matching space. This reductionist

representation of proposed VL method also provides us which step corresponds to which

key components of a characteristic image retrieval based localization system (image

representation, image matching, hybridization). In addition, we able to show not only

where the novel parts of this study takes place with their corresponding steps, but also

how (offline-online) these parts are operated.

In this paragraph, the proposed algorithm to match input images with geo-tagged

ones is introduced. Firstly note that the algorithm from line 1 to 8 can and should be

computed offline, regarding to an actual driving mission. In this representation, proposed

learnt SD-VL takes a query image Ia and return k number of candidates CSD
a from

database images in lines from 1 to 13. In the first line previously trained semantic

segmentation method ‘DeepLabV3+ Retrained-2’ is employed on database images I that

gives us their segmented versions S. In line 2, a CNN model is trained on S with triplet

ranking loss for VL task, then the part from line 3 to 6 corresponds to learnt semantic

descriptor SDi extraction process. Robust indexing is built up in line 7 with our ANNS

method FLANN for database image descriptors collection SDT . Next, these same steps

are operated for a semantically segmented query image Sa in line 9 and 10. From line 11

to 13, ANNS is conducted and k number of best matching images retrieved. Moreover,

the same steps for SD-VL (2-13) is repeated without segmentation in order to obtain

learnt LD-VL in line 14 and 15, so that we obtain best matching k candidates CLD
a for

our LD-VL method. Finally, effective decision-level hybridization methods is

represented from line 16 to 18, that incorporates CLD
a and CSD

a in post-processing level.

As a result, among the k number of Hybrid-VL candidates Chybrid
a the top first one
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Figure 3.2. Proposed algorithm of semantic content based Hybrid-VLDL.

Ihybrid1 is returned against the given query image Ia.

In the following sections, we give further explanation about the proposed

algorithm with detailed implementation of each steps.

3.1. Data sets and Variants

In this section, the preferred Malaga Downtown and RobotCar Seasons data sets,

used in our experiments, are presented. These benchmark VL data sets and their

comparison with the others are already described in Chapter 2. Therefore, detailed usage
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and variants of these data sets are defined in the following paragraphs.

Malaga Urban data set (Blanco-Claraco et al., 2014) provides us number of sub

sections individually for the convenience of usage. Among these sub sections, the most

suitable one ‘Malaga Downtown’ (Figure 3.3) with nearly 8km trajectory is chosen with

respect to the topic of this study. As it is mentioned below there are 62886 stereo images,

however we just turned to account one of them (left or right) that both looks at the same

front direction. This preference cuts in half with a 31443 number of perspective images.

It is clear that, because of its high rate (20fps) image capturing Malaga Downtown needs

to be more sparse in order to be suitable for VL task as described in Section 4.2. On

behalf of this aim, every sequential 20th images were brought together which provides us

nearly 5 meter distance between sequential images. This decreased sub set was named as

Malaga Downtown Base data set that contains 1571 images.

Figure 3.3. Malaga Downtown Base data set trajectory (left) and a sample image of

this data set(right).

RobotCar Seasons data set was introduced (Sattler et al., 2018) in 2018 as the

first benchmark data set specifically designed for analyzing the impact of weather and

seasonal changes on VL as underlined in Chapter 2. In other words, in contrast to the

Malaga Downtown data set, this data set exhibits less variability in viewpoints (trajectory)

but a larger variance in viewing conditions for a city-scale urban driving scenario (Figure

3.4). This data set especially design for VL task with reduction of Oxford RobotCar

data set (Maddern et al., 2017). As it is obviously seen in Table 2.1 from Section 2.3,
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its properties makes this data set mostly matching one with expectations of this study.

This data set contains 10 different traversals that each of them were recorded on the same

10km route. For each sub set highly accurate 6 degree-of-freedom (6DOF) camera pose

estimation and GPS data are also provided. Among these provided 10 traversals one of

them was selected as reference traversal (database image) in overcast conditions and rest

of them were used as query traversals that cover a wide range of conditions as given

in Table 3.1. Also, number of images for each traversals and their changing conditions

are given it this table. In this study, proposed methods were examined on these query

traversals (especially concentrated on Overcast Winter) versus to same single overcast

reference traversal of this data set. Therefore it can be said, practiced RobotCar Seasons

data set contains 6954 database images with changing query images from 400-500 (Table

3.1) according to used query traversal.

Figure 3.4. Sample RobotCar Seasons query images which represent different

conditional changes especially in weather with changing seasons(bottom)

(Sattler et al., 2018).

It should be claimed, in this study, despite images with different viewing angle

(45◦ left or right) are also supplied with RobotCar Seasons data sets. Experiments
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including left and right with the rear ones are also carried out, however these extra

images did not improve the success of proposed method. Moreover, thanks to using just

rear image preference, proposed VL method becomes less time consuming from the both

online and offline computation phases as depicted in the proposed algorithm (Figure

3.2).

Furthermore, adapting the triplet loss for localization aware descriptors requires

to divide our driving path (prior map) for both of the data sets into 3 parts

(training-validation-test) as it is described in Section 3.4 detailed. And this division will

directly affects the performance of SD and LD VL methods. Therefore at least 2

different variants of used Malaga Urban and RobotCar Seasons data sets which were

generated by separating the same path (images) into different 3 parts were examined

with proposed methods.

3.1.1. Newly Generated Data Set: Malaga Streetview Challenge

Differently from RobotCar Seasons data set, there is no available traversals

which is collected in changing conditions for Malaga Downtown data set as it is depicted

in Table 2.1. Starting from this deficiency, we generated a new test traversal on the same

path of Malaga Downtown (Figure 3.3) by means of Google Streetviews (Orlita, 2016).

This newly generated set will be called Malaga Streetview test set, supplies us another

challenging condition: ‘wide baseline’ as given in Table 3.1. We know that RobotCar

Seasons traversal collected with nearly same trajectory with almost unchanging

viewpoint in different times, on the other side Malaga Streetview test set provides us

wide viewpoint changing. This challenging fact is derived from the limited Google

Streetview images that captures the corresponding scene. If we explain more in detail,

sometimes necessary query image is obtained from the other lane (with the opposite

direction of the driving with wide changing in viewpoint) of the road forcefully, because

there is no corresponding image in this zone of current lane. In this way, 436 street view

query images is obtained with changing frequency from 10 meter to 20 meter in the

same 8km route. Also corresponding GPS coordinates are acquired from the already
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given GPS data of Malaga Downtown, in line with this objective GPS coordinates of the

two nearest images from the Malaga Downtown are carefully interpolated. Moreover,

though Malaga Streetview test set is formed with one pass through the same path, it

provides all long-short term environmental changes at once. This changing arises from

this fact, Malaga Downtown data set is generated during restricted time period of a day

in 2014, nevertheless sequential images in Google Streetview are taken from different

time period of different years (2014-2020) that supplies us natural diversity in short-long

terms changes. Both these wide-viewpoint and long-short term environmental changes

are demonstrated in Figure 3.5. Moreover, this new set reflects a real life case, like a

person who is driving towards same path, this realistic scenario is achieved owing to

collecting the images which is mostly coherent with original ones from Malaga

Downtown data set and capturing them with fixed pan-tilt-zoom value. Also manually

segmented version of this new data set is generated as described in Section 3.2.

This newly generated Malaga Streetview test set (436) used as a query images

while Malaga Downtown Base set (1571) is accepted as database images (prior map). So

that, this new integrated data set totally includes 2007 query and database images. Then,

experiments related with Malaga Downtown in the next Chapter were mainly carried out

on this new challenging data set named as Malaga Streetview Challenge. Detailed statistic

and comparison with RobotCar Seasons data set are giving in Table 3.1. In addition, this

newly generated test data set will be useful to the community of VL area.

Table 3.1. Detailed statistics for the two benchmark data sets used in this study.

Data set Image Capture database images conditions (# images) query images conditions (# images)

RobotCar

Seasons(Sattler

et al., 2018)

Short baseline Overcast-November (6954) dawn (483), dusk (394), night (483),

night+rain (440), rain (421), overcast

summer /winter (463/390), snow (489), sun

(460)

Malaga

Streetview

Challenge(ours)

Wide baseline Overcast-September (1571) Google Streetview (436): all short-long term

changes by different time period and years

from 2014 to 2020
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Figure 3.5. Changes in wide viewpoint and short/long term conditions (weather,

lighting / new buildings etc.) between Malaga Streetview (left) and

corresponding Malaga Downtown Base (right) images is compared.
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3.2. Semantic Segmentation Methodology

As mentioned in previous chapters main contribution of this thesis was achieved

by using the semantic information in a scene. This semantic information is acquired from

semantically segmented images. Different kinds of semantic segmentation approaches

(such as manually annotating and automatically annotating) were examined in this study.

Implementation details of these approaches are described in this section.

In the initial stage of this work, our semantic segmentation was carried out with a

manually annotating tool. Among the all usable pixel wise labeling tool just LIBLABEL

(Geiger et al., 2013) makes polygonal annotation. It is a Matlab tool for annotating images

with polygons. We can easily obtain semantic label map of a given image, this tool let us

add and remove polygons around objects. By this way we managed to segment our image

according to specific semantic classes with their respective colors as illustrated in Figure

3.6. In this figure, an image from Malaga Downtown Base is depicted with its annotated

and segmented versions.

Figure 3.6. An image from Malaga Streetview Challenge data set and its semantically

segmented version with LIBLABEL.

That is obviously seen in this figure, we just needed to label large area and

stationary object because its known tiny objects do not affect semantic information so

much, on the other hand labeling moving objects makes the semantic information

vulnerable against short term changes in a city-scale driving scenario. Under the light of
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these labeling rules, I configured LIBLABEL tool and only labeled images in Malaga

Streetview Challenge data set according to 7 object classes: Building, Car, Road,

Sidewalk, Sky, Tree, Wall. On behalf of labeling whole Malaga Streetview Challenge

data set images (2007), first polygon labels had been prepared for each image in ".mat"

format then they were converted to segmented images. Also a matrix form of each image

was created which just includes the object class ID instead of labeled color values.

Moreover this provided semantically annotated data will be useful to the community of

VL area who especially works on semantic segmentation subject.

This manual segmentation process is very time consuming together with its

inconsistent annotation performance. Therefore, a CNN based semantic segmentation

framework SegNet: a deep convolutional encoder-decoder architecture for robust

semantic multi-class pixel-wise segmentation (Badrinarayanan et al., 2017) which is

explained in Section 2.4 was employed in order to using it in our SD-VL method. This

semantic segmentation network classifies every pixel in an image, resulting in an image

that is segmented by classes. Pretrained version of SegNet model ‘Pretrained SegNet’

was designed especially in order to segment road for autonomous driving. This model

had already trained on Camvid (Cambridge Labeled Objects in Video) data set

(Fauqueur et al., 2007) with provided 701 manually segmented images, that contains

street-level views obtained while driving. The data set provides pixel-level labels for 32

semantic classes. In this work, these detailed 32 semantic classes compressed into 11

object classes (Building, Car, Road, Sidewalk, Sky, Tree, Pedestrian, Bicycle, Pole,

Fence, SignSymbol) that also includes the previously selected 7 semantic classes.

Thanks to the SegNet, more consistent semantic segmentation labels were gathered

automatically with these enlarged 11 semantic classes as demonstrated in the Figure 3.7.

Image pair in this figure clearly shows that, SegNet not only segments image of Malaga

Downtown Base successfully but also it performs the same success on newly created

Malaga Streetview test set.

The growing usage of deep learning techniques in last five years also has

accelerated the development of CNN based segmentation models. And we know, the

more robust semantic segmentation is managed the more successful proposed SD-VL

will be performed in this study. This expectation leads us seeking for more powerful
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Figure 3.7. Pair of Malaga Downtown Base image (left side) and corresponding

Malaga Streetview (right side) one, both are segmented semantically with

‘Pretrained SegNet’.

semantic segmentation model to segment our images more accurately with respect to

SegNet. Hence, we came across with DeepLabv3+ (Chen et al., 2018) as a state of the

art semantic segmentation method, which was designed by Google and meets with our

expectation. DeepLab series has come along for versions from DeepLabv1 [8],

DeepLabv2 [9], and DeepLabv3 [10]. In this study, its latest version ‘DeepLabv3+’

released in 2018 was employed. Also its superiority of this model against its previous

version and SegNet had already shown in Section 3.2 which is mainly results from its

characteristic Encoder-Decoder structure with Atrous Separable Convolutions. Whole

these reasons canalize us using ‘DeepLabv3+’ model as our final baseline semantic

segmentation method. First of all, its pretrained version ‘Pretrained DeepLabv3+’ that

had already been trained on Camvid data set as like as SegNet was examined. After that,

its performance is enhanced with retraining it on our RobotCar Seasons data set.

Using Pretrained DeepLabv3+ had already increased the semantic segmentation

success with respect to Pretrained SegNet as depicted with comparison of the first two

column in Figure 3.8. Moreover, we were curious about whether the performance of

Pretrained DeepLabv3+ will be increased with retraining on our database instead of

using pretrained models which is just trained on manually annotated 701 CamVid

images. On the other side, we had already observed the negative impact of differences in

horizon level on Pretrained SegNet based hand crafted SD-VL methods with respect to
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different query traversal of RobotCar Season data set in Figure 4.4. This fact will be

reasoned with that, a semantic segmentation model trained with viewing tilt angle of

CamVid inevitably gives a poor result when it is practiced on a query image of RobotCar

Seasons which also has different tilt angle of view. Thus, re-training the model with

different data set which have similar horizon level (horizon level of CamVid assimilating

to horizon level of RobotCar Seasons) will increase the performance of semantic

segmentation. Under the line of these expectation we retrained the ‘DeepLabV3+’

network on different traversals of RobotCar Seasons data set. In this way, we need to

generate our own weakly-supervised segmented version of images as a training and

validation set, because of the absence of annotated RobotCar Seasons images. We

inspired from the proposed procedure as it is being in the paper named as ‘Find Your

Own Way: Weakly-Supervised Segmentation of Path Proposals for Urban Autonomy’

(Barnes et al., 2017). We present a similar weakly-supervised approach in order to

segment selected training images with the goal of autonomous driving in complex urban

environments. By this way, our employed methodology generated vast quantities of

labeled images especially containing our target object classes without requiring manual

annotation, which we then use to train a deep semantic segmentation network.

Then as it is mentioned in previous paragraphs, re-training the model with

different data set which have similar horizon level will increase the performance of

semantic segmentation. On this purpose, we adjusted the horizon level of CamVid

images so that it conforms to the horizon level in RobotCar Seasons. Thus and so with

addition of manually labelled CamVid (701) data set to our RobotCar Seasons

Segmented-1 we created our RobotCar Seasons Segmented-2 data set that consists of

1725 images

After generation of these two RobotCar Seasons Segmented sets, we randomly

divided %75 of both sets as training sets and used rest of them as a validation sets. Then,

‘Deeplab v3+’ network whose weights initialized from a pretrained Resnet-18 network

was trained with these two segmented data sets. ResNet-18 is a CNN that has 18 deep

layers and which had been trained on more than a million images from the ImageNet

database (Deng et al., 2009). Best training parameters were determined by means of many

trials, and we had carried out a healthy training process with a validation accuracy that

36



nearly reaches to % 92 for both segmented sets. Resulting re-trained models on RobotCar

Seasons Segmented-1 and RobotCar Seasons Segmented-2 were named as DeepLabV3+

Retrained-1 and DeepLabV3+ Retrained-2 respectively. Steps of this weakly-supervised

segmentation methodology is given below:

• All images of 7 traversals (Table 3.1) without night and night-rain in RobotCar

Seasons data set were semantically segmented with Pretrained DeepLabv3+ model.

• After visualizing all these segmented images, nearly 150 images per traversals

which reflect our semantic classes in the best way were selected systematically.

• Selected images which composes our segmented label data set are excluded from

their traversals (query sets).

Thanks to this weakly-supervised segmentation, our new segmented data set that

is named as RobotCar Seasons Segmented-1 consists of 1024 images. Then as it is

mentioned in previous paragraphs, re-training the model with different data set which

have similar horizon level will increase the performance of semantic segmentation. On

this purpose, we adjusted the horizon level of CamVid images as similar as RobotCar

Seasons’ horizon level. Thus and so with addition of manually labelled CamVid (701)

data set to our RobotCar Seasons Segmented-1 we created our RobotCar Seasons

Segmented-2 data set that consists of 1725 images.

After generation of these two RobotCar Seasons Segmented sets, we randomly

divided %75 of both sets as training sets and used rest of them as a validation sets. Then,

‘Deeplab v3+’ network whose weights initialized from a pretrained Resnet-18 network

was trained on these two segmented data sets. ResNet-18 is a CNN that has 18 deep

layers and which had been trained on more than a million images from the ImageNet

database (Deng et al., 2009). Best training parameters were determined by means of many

trials, and we had carried out a healthy training process with a validation accuracy that

nearly reaches to % 92 for both segmented sets. Resulting re-trained models on RobotCar

Seasons Segmented-1 and RobotCar Seasons Segmented-2 were named as DeepLabV3+

Retrained-1 and DeepLabV3+ Retrained-2 respectively.
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These new ‘DeepLabv3+’ based retrained semantic segmentation models are

compared in Figure 3.8 with Pretrained DeepLabv3+ and ‘Pretrained SegNet’ that both

are previously trained just on manually annotated CamVid driving set.

Figure 3.8. Segmentation performance comparison between performed semantic

segmentation models, ‘Pretrained SegNet’, ‘Pretrained DeepLabv3+’,

‘DeepLabV3+ Retrained-1’ and ‘DeepLabV3+ Retrained-2’ respectively

from left to right for those same images (columns).

In Figure 3.8 each column corresponds to compared these 4 models Pretrained

SegNet, Pretrained DeepLabv3+, DeepLabV3+ Retrained-1 and DeepLabV3+

Retrained-2 respectively from left to right. And each row corresponds to same image

that is selected from the different traversals of RobotCar Seasons data set. This figure

obviously visualized that, there is a big semantic segmentation difference especially

between Pretrained SegNet and Pretrained DeepLabv3+ (from 1st column to 2nd
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column). In addition to this, we also could say that retraining a model makes

contribution to semantic segmentation performance as we observe the increasing

segmentation success from 2nd column to 3rd one. At last column, DeepLabV3+

Retrained-2 which retrained on the enlarged RobotCar Seasons Segmented-2 data set is

deduced as the superior one.

Furthermore, we also employed the same DeepLabV3+ Retrained-2 model

successfully while obtaining the semantically segmented version of Malaga Streetview

Challenge data set without retraining on this data set again. Robustness of this model

against these unseen images is visualized in Figure 3.9.

Figure 3.9. Successful semantic segmentation performance of DeepLabV3+

Retrained-2 on some sample images of Malaga Streetview Challenge data

set.

As a result of its approved success (Fig. 3.8, Fig. 3.9), in this study we mainly

employed the ‘DeepLabV3+ Retrained-2’ model as a baseline method while we were

segmented our images into 11 semantic classes.
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3.3. Non-Learnt Descriptor based VL’s

In this section, employed SURF based LD-VL and newly generated SD-VL

methods based on segmentation are introduced. These ‘non-learnt’ VL approaches

which means we did not train them for our localization task were applied with

integration of our ANNS methods FLANN, and they were accepted as our base hand

crafted approaches in this study. Also, our initial Hybrid-VL methods were instructed on

these LD-VL methods. Our first promising results for Hybrid-VL were acquired thanks

to these base methods in the early stage of this work.

3.3.1. Hand Crafted LD-VL with SURF

Interest points of related images were extracted by means of SURF descriptor on

which our hand crafted LD-VL method is instructed. In the early stage of this study this

non-learnt LD-VL method was employed especially for the poof of the concept (Section

4.2) in which our initial promising results were obtained.

The important points we need to pay attention in this section is that, if we manage

to represent whole image with a single compact descriptor, image matching will be easily

performed with directly usage of FLANN. On the other hand, if we use LD like SURF we

need to apply special matching procedure which is constructed on repetition number of

matching features which are returned as interest (key) points of an image. Because SURF

descriptor represents an image with changeable number of binary feature vector [1X64]

whose number varies form image to image. And then, FLANN matching algorithm makes

their matching on data points, where these data points correspond to our binary feature

vectors in an image. In line with solving this problem we converted this descriptor level

matching into image level matching by implementing a powerful indexing that provides

us the information of which LD’s come from which images. The idea is simple: given a

certain collection containing images, and a small image to be matched, the FLANN must

process each one of them, determining a value which represents how many key points

from the query image have been spotted into the cycled collection image. At the end of
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the loop, the collection image that will have returned the higher values are more likely to

be the results we expect (in other word, higher the score, higher are the chances our query

is contained into those images).

After making FLANN compatible with SURF based LD’s we called this hand

crafted method as LD-V LSURF . Also note that, all the other implemented methods that

represent whole image with a single compact descriptor do not need to use this

compatibility procedure while using our ANNS method.

3.3.2. A Novel Hand Crafted SD-VL with Segmentation

Semantic information were extracted from equally divided parts of our segmented

images as a novel SD on which our hand crafted SD-VL method is instructed. In the early

stage of this study this non-learnt SD-VL method was especially employed (Section 4.2)

to obtain our initial promising hybrid results. Moreover, necessity of location-aware SD

was came to light owing to several experiments in which this hand crafted descriptor

based SD-VL was compared.

Semantically segmented images were acquired with different type of approaches

as described in Section 3.2. Unfortunately this semantic information does not mean

anything without converting them into a useful SD descriptor which also has a

compatible form for usage of FLANN. Images in Malaga Streetview Challenge (2007)

and RobotCar Seasons had already been segmented up to 11 semantic classes (Building,

Car, Road, Sidewalk, Sky, Tree, Pedestrian, Bicycle, Pole, Fence, SignSymbol)

according to employed semantic segmentation methodology as described in the related

part. Actually, these semantic classes were especially preferred in order to create our

hand crafted SD descriptor, because contribution of these frequently seen classes must be

greater than other rarely seen classes on transmitting the semantic information.

In line with converting semantic information into a compact feature vector, the

ratio of amount of the pixels assigned to each semantic class to all pixels of relevant region

was embedded into a feature vector [1 xnSC ], where nSC denotes number of semantic

classes. By this way in each cell of this vector, repetition information belonging to each
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classes are stored as a decimal number which ranges between 0-1. After this process

was applied to the whole segmented image, the same process was repeated on the equally

divided sub parts of the images, where nSP denotes number of sub-images. So that we

generated extra nSP number of [1 xnSC] feature vectors. Concatenation of these feature

vectors resulted in with our final hand crafted SD with the given size below:

SDnon_learnt = [1 xnSC ] + nSP ∗ [1 xnSC ] (3.1)

For a clear comprehension, Figure 3.10 visualizes the Equation 3.1 on the same

image used in Figure 3.6. In this figure, implementation parameters nSC=7 and nSP=4

denote 7 semantic classes and 4 equal sub parts that give us 5 pieces of [1x7] feature

vectors. After concatenation of these 5 vectors this sample hand crafted SD is finally

represented with a [1x35] sized vector.

Figure 3.10. Hand crafted SD representation with 4 sub-images: each cell [1 x 7] of

these vector stores the percentage of the corresponding semantic class

pixel.

Furthermore, someone will ask this question "how many number of sub part

should a segmented image divided into?". In order to find answer to this question, we

applied experiments without and with dividing the whole segmented image into different

numbers of sub parts like 4,9,16,64. Dividing our image into 4 equal parts with addition
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of whole image gave the optimal result for the VL task. This result will be reasoned with

that, just using the whole segmented image makes our hand crafted SD behave like a

global descriptor, on the other side using segmented image that is equally divided into 64

sub parts makes it behave like a key-point local descriptor. As a result of this fact,

proposed non-learnt SD in this study were generated with concatenation of whole

segmented image and its 4 equally divided parts as it is demonstrated in Figure 3.10.

This novel hand craft SD extraction methodology provides us the distinguishing

talent of the relative positions of the objects in an image; in example this proposed SD

easily able to differentiate a scene in which trees appear on the left side and building

appears on the right side from another scene in which these objects takes part in revers

side.

Moreover, this proposed compact feature vector comes from a whole segmented

image also makes our SD work directly with FLANN matching algorithm without any

extra indexing procedure as being for LD-V LSURF . Because we can directly obtain our

SD descriptor SDnon_learnt which able to represent a whole segmented image with one

feature vector (Equation 3.1).

To sum up, different type of hand crafted SD-VL methods were built up by

incorporation of our ANNS method. Regards to using the previously introduced (Section

3.2) semantic segmentation models: ‘LIBLABEL’, ‘Pretrained SegNet’, ‘Pretrained

DeepLabv3+’, ‘DeepLabV3+ Retrained-1’ and ‘DeepLabV3+ Retrained-2’. These

‘non-learnt’ SD-VL methods were named as SD-V LLIBLABEL, SD-V LPretSegNet,

SD-V LPretDeepLabv3+, SD-V LDeepLabV 3+_Retr1 and SD-V LDeepLabV 3+_Retr2

respectively.

3.4. Learnt Descriptor based VL’s

In this section, employed NetVLAD based LD-VL and newly proposed SD-VL

methods based on segmentation with triplet loss are introduced. The state-of-the-art VL

performance is achieved by NetVLAD as underlined in Section 2.1, therefore this

architecture was employed while training our descriptors for our localization task. Then,
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these location-aware SD and LD descriptors were integrated with FLANN and they were

named as ‘learnt’ VL approaches. Furthermore, these learnt VL approaches were used

as our baseline approaches in this thesis and comparison with recent work could be

possible owing to these approaches. In other words, the final success (Section 4.4) of

improved Hybrid-VL methods were obtained thanks to these ‘learnt’ descriptor based

VL methods.

Pretrained networks have been recently used as off-the-shelf dense descriptor

extractors for image retrieval task. Differently from the previous deep learning based VL

approaches, NetVLAD (Arandjelovic et al., 2016) trains a CNN in order to optimize and

output the embedding itself directly, rather than optimizing an intermediate bottleneck

layer generating embedding. NetVLAD architecture was properly designed for VL task

inspired by the VLAD representation (Jégou et al., 2010). In other words, NetVLAD

mimicks the VLAD in a CNN framework by converting it into trainable generalized

VLAD layer. This trainable VLAD layer is illustrated in Figure 3.11. In this figure, K

denotes the number of cluster used while clustering all extracted descriptors, also

detailed explanation related with VLAD descriptor will be found in Section 2.1. This

networks is mainly constructed on two well known pre-trained architecture VGG16

(Simonyan and Zisserman, 2014) and AlexNet (Krizhevsky et al., 2012) and initialized

with their pretrained weights. Both these networks are pretrained for classification task

on ImageNet (Deng et al., 2009) and Places205 (Zhou et al., 2014), thus both are

cropped at the last convolutional layer (conv5), before ReLU then these base

architectures are extended with NetVLAD layers instead of Max pooling. This

developed new pooling layer aggregates mid-level (conv5) convolutional features

extracted from the entire image into a fixed length vector representation and its

parameters are learnable via back-propagation.

Learning phase is implemented with triplet loss which was firstly introduced in

FaceNet (Schroff et al., 2015). NetVLAD adopted the same triplet loss training procedure

for VL task instead of face recognition and this new loss named as ‘Weakly supervised

triplet ranking loss’. Let the desired location-aware descriptor is represented with fθ(q) ∈

Rd where a query image q is embedded into a d-dimensional euclidean space. From
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Figure 3.11. NetVLAD architecture (Arandjelovic et al., 2016).

RobotCar Seasons and Malaga Streetview Challenge data sets, we obtain a training data

set of tuples (q, pqi , {nqj}), where for each training query image q we have a best matching

positive pqi and a set of definite negatives {nqj}. Here we want to optimize the training

parameters θ that a query image q (anchor) of a specific location is closer to a differently-

viewed version pqi (positive) of the same place than it is to any image nqj (negative) of

any other place. This triplet loss based optimization is visualized in Figure 3.12 and its

translation into a ranking loss for VL task is summarized in the following paragraph.

Figure 3.12. Triplet Loss minimizes the distance between the anchor(query) and its

positive sample, while maximizes the distance between the same anchor

and its negative exemplars.

We assume a query q is given as a test image. Same ‘triplet ranking loss’ for

NetVLAD applied in this study but with a different selection of best matching positive

image pqi

pqi = argmin
tdb

dgps(q, t
db) (3.2)

among the database images tdb of training set for each training tuple (q, pqi , {nqj}).
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This difference is raised because of the usage of weakly labeled Google Streetview Time

Machine panoramas in the original NetVLAD implementation. A panoramic image

depicting the same place from different viewpoints over time, therefore they find the best

matching slice of this panoramic image by computing the euclidean distance between a

query image and this slices (potential positives). However in this study our data sets

directly provide us the over time effect with their traversals that contains sequential

perspective images. Therefore we directly accepted the best matching positive pqi by

determining the nearest (meter) database images in accordance with GPS information.

The objective then becomes to learn an image representation fθ(q) so that euclidean

distance dθ(q, p
q
i ) between the training query q and the best matching positive pqi is

smaller than the distance dθ(q, n
q
j) between the query q and all negative images in {nqj} :

dθ(q, p
q
i ) < dθ(q, n

q
j), ∀j. (3.3)

Under the light of this objective, final ‘triplet ranking lost’ Lθ for a training tuple

(q, pqi , {nqj}) is defined as in NetVLAD (Arandjelovic et al., 2016)

Lθ =
∑
j

h
(
d2θ(q, p

q
i ) + m − d2θ(q, n

q
j)
)
, (3.4)

where h is the hinge loss h(x) = max(x, 0), and m is a margin that is enforced between

positive and negative pairs. The Equation 3.4 is a sum of losses for negative images in

{nqj}. According to this function, for every negative that has distance between the query

and the negative is greater by a margin than the distance between the query and the best

matching positive, the loss h is zero. In a reverse condition, if the margin is violated by

the distance to the negative image that is exceedingly grater than the distance to the best

matching positive, the loss increases in proportional to the amount of violation. This loss

function in NetVLAD architecture makes our ‘learnt’ descriptors end-to-end trainable on

our data sets.

In order to train, triplets of roughly aligned matching / non-matching place tuples
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generated using a novel online triplet mining method for not only training data set but

also for validation and test sets. Both the database and query sets of the used data sets

are divided into mutually geographically disjoint 3 parts for training, validation and

testing. This division was done geographically to ensure these 3 separated parts contain

independent image from each other while ensuring to have same interval of prior map

withing themselves for their database and query set. This division will be explained with

an example. Consecutive images within a training part must have overlapping visual

content for its own query and database sets, while images in this part are geographically

independent from the validation and testing parts. This division certainly affects the

performance of training and testing of our proposed VL’s. Therefore VL’s are employed

at least 2 different variants (Section 3.1) of these divisions for both data sets. As a result

of this divisions Malaga Steetview Challenge data set contains around 523 database

images and 145 queries; RobotCar Seasons data set contains around 2318 database and

150 query images for each of its traversals.

Moreover, in order to ensure fast convergence it is critical to select hard triplets

that violate the triplet constraint m in Equation 3.4. This means that, for a given q , we

should select an nqj (hard negative) such that

argmin
nq
j

d2θ(q, n
q
j). (3.5)

The similar hard mining could not be applied for hard positives because we directly

selected the best matching positive pqi in regarding to nearest GPS location. However,

applying this hard negative triplet mining across the whole training database set is

infeasible. Therefore efficient online triplet generation can be done by selecting the hard

negative exemplars from within a mini-batch. Also to speed up the training, NetVLAD

provides us to compute a cache of all the features, to be used for a number of iterations,

and then be recomputed again. This number is called ‘compute and cache frequency’,

and it’s best value is between 1000 and 500. This triplet ranking loss training procedure

and its usage in this study are summarized below:

• Establish NetVLAD framework: the network is constructed on the pretrained base
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(VGG16 (Simonyan and Zisserman, 2014) or AlexNet (Krizhevsky et al., 2012))

models that is extended with NetVLAD (Arandjelovic et al., 2016) as depicted in

Figure 3.11. Also these networks are initialized with pretrained weights of their

base models.

• Take the training and validation sets: after our data sets are geographically divided

into training,validation and testing parts for each of the database and query sets as

depicted in previous paragraphs, all these two parts are stored in a structure. This

structure consists of the path for the query and database images, how many

database and query images there are, the coordinates, thresholds in meter for

choosing hard negative samples (TNS: default value is 25 meter) and some others

information. Then, this carefully created structure is given to the previously

defined dataloader as a argument, that additionally computes and stores the

suitable closest point according to previously determined triplet threshold.

• Initialize the training: all queries in training set is separated according to batch

size for each epochs, then descriptors of the database are extracted for each

sequential batches. This extraction is performed on each queries and its

corresponding tensor returned by the same dataloader, which simultaneously

computed the nearest (Eq. 3.2) positive and the 10 hard negatives (Eq. 3.5) for

each query according to previously determined closest points (TNS). Thanks to the

caching process, sequential database descriptor are computed and saved for a fixed

interval that provides us an efficient computation. After that, the Triplet Loss (Eq.

3.4) is calculated and the backpropagation algorithm is performed for all the

subsets of queries set.

• Pick the best model: success of the each epoch is examined on the previously

generated test set (database & query images) and results of each epochs compared

thanks to stored checkpoints. Comparison is conducted by means of Recall@5

evaluation metric, which give percentage of correctly localized queries with

respect to top 5 returned candidates that lies inside the TNS meter radius of the

ground truth query position. Finally, after best epoch is determined its

corresponding model is selected as the trained best model.
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• Extracting learnt descriptor: testing data set (database & query) is also loaded with

the same dataloader. Then, the best model obtained from the training is employed

on both the database and query images of this data set. As a result of this feature

extraction, we gained the 16k and 32k dimensional VLAD vectors (Figure 3.11)

with K = 64 cluster numbers regarding to used base models AlexNet and VGG16

respectively . These image representation was used as a learnt SD & LD descriptors

in our proposed VL methods.

The essential code that was used and adjusted in this study will be downloaded

from a GitHub repository (Arandjelović, 2015), where the NetVLAD was originally

developed in Matlab using MatConvNet (Vedaldi and Lenc, 2015) CNN toolbox. Our

trainings on NetVLAD architecture have been done in GPU mode with the given

configurations:

– Base model: AlexNET (Krizhevsky et al., 2012) or VGG16 (Simonyan and

Zisserman, 2014) pre-trained on ImageNet (Deng et al., 2009) and Places205

(Zhou et al., 2014);

– Training Loss: NetVLAD (Arandjelovic et al., 2016) triplet ranking loss;

– Layer Name: Crop the initial network at last convolutional layer, conv5 for

AlexNet, conv5_3 for VGG16;

– Trainable Layers: whole NetVLAD layer + layers strat from last conv layers of base

models to changing former layers(conv5_1 for VGG16 & conv2 for AlexNet);

– Optimizer: Stochastic Gradient Descent (SGD) ;

– Number of clusters K: 64, clustering the extracted descriptors in VLAD (Jégou

et al., 2010) manner;

– Learning rate: 0.0001;

– Momentum: 0.9;

– Weight decay: 0.001;
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– Margin: 0.1

– Number of Epochs: 15;

– Batch size: 4 tuples (each tuple contains the query, the positive and at most 10

negatives);

– TNS: 25 / 70 (w.r.t. data set) meter threshold for choosing negative samples;

– Compute and cache frequency: 1000 features;

Some of these configuration above are given with changing options, these options

had already been examined and its impact on our VL’s method is depicted in Chapter 4.

3.4.1. LD-VL with NetVLAD

NetVLAD based triplet ranking loss was directly employed on RGB rear images

(database - query sets) of RobotCar Seasons and we obtained the ‘learnt’ image

representation with 16K/32K dimensional feature vectors. In other words, instead of

using a hand-crafted descriptor (SURF) we used CNN based (learnt) descriptors and

integrated them with our ANN image matching method. In this way we instructed our

baseline LD-VL method that is called LD-V LNetV LAD. This baseline method was

implemented for different traversals (e.g. Overcast-Winter) of RobotCar Seasons data set

so that their best models are gained individually. During the network training phase of

this method, we followed the same steps with the same configurations as represented in

the previous section. Detailed generation parameters of the gained best models for this

method will be found in Section 4.3 with their corresponding experimental results. By

this way, similar state-of-the-art performance for this traversals was achieved regarding

to recent works which approves the reliability of our baseline methods. After this

confirmation on RobotCar Seasons, the same learning procedure is repeated with the

same parameters (with different TNS) on the Malaga Streetview Challenge data set. So

that, specific LD-V LNetV LAD was generated for this data set with its best model. Also

note that, different appropriate TNS parameters are applied regarding to sparseness of

data sets.
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3.4.2. A Novel SD-VL trained with Triplet Ranking Loss

Using the proposed hand crafted descriptor based ‘non-learnt’ SD-VL methods,

which are described in Section 3.3.2 in detailed, will be inadequate for our localization

task as it is showed up in Section 4.3. In order to cope with this inability, the same triplet

ranking loss was implemented on semantically segmented versions of the same images

(database-query sets) belonging to RobotCar Seasons and Malaga Streetview Challenge

data sets.

In order to be fair against the baseline LD-V LNetV LAD method, the same training

steps which are given at the end of Section 3.4 was implemented with the same parameter

configuration (Base model, NetVLAD layer based pooling, Optimizer, Trainable Layers,

K, TNS etc.). In addition, also the best model of SD-V LLearnt method was generated

on the same divided variants of the same traversals which are used for LD-V LNetV LAD

method. By this way, our learnt SD was extracted with localization objective as illustrated

in Figure 3.13. Note that, CNN part of this new training setting visualized in Figure 3.13

corresponds to the same architecture of NetVLAD (Figure 3.11). In other words, instead

of using a hand-crafted semantic descriptor (Section 3.3.2) we used CNN based (learnt)

descriptors and integrated them with our ANN image matching method. Then this new

VL method was named as SD-V LLearnt.

Figure 3.13. Learnt SD trained with triplet ranking loss for VL task on semantically

segmented images.
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Superiority of our retrained semantic segmentation model ‘DeepLabV3+

Retrained-2’ on both data sets had already been demonstrated in Section 3.2 with Figure

3.8 and Fig. 3.9. Thus, as an input of proposed SD-V LLearnt method, we used images

which had been previously segmented into 11 semantic classes by means of this baseline

‘DeepLabV3+ Retrained-2’ model. Consequently, thanks to this novel SD-VL method

which works on semantically color coded images, we directly incorporated the

localization awareness with the distinguishing power of the relative positions of the

objects in an scene. Also success of the proposed SD-V LLearnt method has already been

demonstrated in our previous study (Cinaroglu and Bastanlar, 2020). Detailed generation

parameters of the gained best models for this method will be found in Section 4.4 with

their corresponding experimental results.

3.5. Improved Hybrid-VL Methods

As a main contribution of this study, firstly a novel Hybrid-VLDL method is

proposed by combining SD-VL and LD-VL methods with the aim of alleviating the

drawbacks of both methods. The success of Hybrid-VLDL method is obtained by means

of hyper-parameter W as described in Subsection 3.5.1 and its empirical adjustment is

given in Section 4.6. Secondly, Hybrid-VLFL is proposed in order to gather a

automatically tuned Hybrid-VL result as described in Subsection 3.5.2. Thanks to the

Hybrid-VLFL method, optimum hybridization parameters (hidden) are determined by

NN trained with triplet loss instead of relying on any hyper-parameter. By this way,

reliability of our hyper-parameter (W) based Hybrid-VLDL approach is supported by

very close performances obtained with Hybrid-VLFL method as given in the next

chapter.

3.5.1. Improved Decision Level Hybrid-VL Method

Before giving details it should be noted that, there is no need to use any ANNS

while producing our Hybrid-VLDL methods. Because, hybridization occurs in
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post-process stage and k number of matching results had already been obtained as a

product of FLANN which came from both methods. Then this results are combined

regarding to their retrieving orders of candidate images and their distance values in this

proposed hybridization methodology. The same methodology is employed for all

Hybrid-VLDL methods examined in the next chapter with different combinations of

SD-VL and LD-VL methods.

Our ANNS method had already synchronized for both SD-VL and LD-VL

methods with suitable adaptation in which images are directly compared owing to used

compact vector representations (16K / 32K). ANNS was employed for k=10 nearest

neighbors in all experiments as depicted in the representation of proposed algorithm

(Figure 3.2). Assume that, 10 nearest candidate images stored in SDi and LDi are

returned from both two methods with corresponding distance vectors Dj(SDi) and

Dj(LDi) respectively for a given ith query image. Where j refers k nearest candidate

that changes from 1 to 10. Note that, Dj(SDi) and Dj(LDi) are returned in ascending

order. Then, assume we have m number of query images for our SD-VL method, both of

the retrieved candidate vectors SDi and Dj(SDi) are concatenated in matrices k x mngh ,

k x mdist (Section 2.2) respectively as a collection. Also same matrices are gathered for

the LD-VL methods. There is unequal distribution in values, between these distance

collections k x mdist returned from each method. In order to achieve a reliable

hybridization based on distance values we need to normalize these collections within

themselves in [0 − 1] range. Unfortunately, the normalized distance values in each

collections still will be unevenly distributed as depicted in the top row of Figure 3.14.

Thus, histogram equalization on both kxmdist matrices were carried out in order to

obtain a balanced distribution which is depicted in Figure 3.14.

As depicted in Figure 3.14, normalized LD-VL distances are condensed close

to zero, whereas normalized SD-VL distances are closer to one. Before explaining the

reason behind this imbalance distribution we shouldn’t forget that these values in Figure

3.14 (top row ones) are scaled [0− 1] euclidean distances between descriptor pairs. From

the side of LD distances, here there are small number of outliers which are extreme-

high distance values (such as 1000) with respect to majority of LD distances. Hence,

when we normalize all these values in [0 − 1] range, majority of distribution stick to
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left side (0) of scale (top-left histogram in Figure 3.14). The reason for these extreme-

high outliers is the diversity between descriptors, because there are detailed differences

between a mosque and a house, although they are both buildings(round large windows

vs small square windows). On the other hand, SD distribution also has small number of

outliers, but these are extreme-low distance values (such as 0.001) according to majority

of SD distances. Therefore, when we normalize all these values in [0− 1] range, majority

of distribution stick to right side (1) of scale (top-right histogram in Figure 3.14). The

reason of these extreme-low outliers is that, both a mosque and a house are labeled as

a building which means there may be segmented images that are identical to each other.

Although learnt-SD learns to separate this similarity, this inevitable sameness makes these

extreme-low distance values possible between outlier descriptors.

Figure 3.14. Distributions of distance values in k x mdist matrix for LD-VL (1st column)

and SD-VL (2nd column) methods before (1st row) and after(2nd row)

histogram equalization.
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After pre-processing the distance values for a reliable integration, now we able to

combine the SDi and LDi results came from both VL methods for all query images as

displayed in Figure 3.15. In order to achieve this integration strategy, current distance

values (Dj(SDi) and Dj(LDi)) per each query images are updated by weighting each

candidates with respect to their ranking and W hyper-parameter. This hybrid distance

updating equation is given below:

Dnew(ij) =


Dj(SDi) ∗ (

rnkj(SDi)

k
) ∗W +Dj(LDi) ∗ (

rnkj(LDi)

k
) ∗ (1−W ) if j ∈ (SDi ∩ LDi)

Dj(LDi) else if j ∈ (LDi)

Dj(SDi) else if j ∈ (SDi)

(3.6)

where rnkj(SDi) and rnkj(LDi) denote the ranking of j th candidate image in SDi and

LDi lists. We know that Dj(LDi) and Dj(SDi) are already normalized in the range

[0 − 1], but summation operation in the first case j ∈ (SDi ∩ LDi) of the Equation 3.6

disrupts the normalization situation against the other two cases (j ∈ (LDi), j ∈ (SDi)).

In other words, summation Dj(LDi) + Dj(SDi) makes first case disadvantageous with

total distance value varies in [0−2] range. In order to be fair against all these cases, while

updating a hybrid distance Dnew(ij) value in case 1, we fit them in range [0− 1] again by

weighting the both side of summation operator with W and ‘1-W’ hyper-parameters. At

the same time, thanks to the W parameters we can also tune the contribution of SD-VL

and LD-VL in the first case. The lower W value we set in case 1, the more we trust on

LD-VL method.

At the same time among these three cases, to increase importance of first case

j ∈ (SDi ∩ LDi) against others, we also reward these Dj(LDi) and Dj(SDi) distances

directly proportionate to their rankings rnkj
k

(w.r.t ascending order). I.e. for higher rank

candidates distance values are even decreased. As a last step of this hybridization, we

reorder these previously returned 20 candidate images (SDi and LDi) according to their

updated distance values Dnew(ij), then we accept the top 10 images in this new list as a

final result of Hybrid-VLDL method.

I should note that, fine-tuning the decision level hybridization with W

hyper-parameter is very important point. We should trust on the better VL method
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Figure 3.15. Decision-level Hybridization methodology.

among the SD-VL and LD-VL methods. Impact of ‘tuning with W parameter’ of

Hybrid-VLDL is demonstrated in Section 4.6.

3.5.2. Improved Feature Level Hybrid-VL Method

Our proposed decision-level Hybrid-VL approach depends on a externally tuned

hyper-parameter W. We also investigate if an automatically tuned hybrid method achieve

the same or better performance under same conditions. Therefore, a new Hybrid-VLFL

method that is based on NN trained with triplet loss is proposed in order to produce

automatically tuned hybrid result. In other words, this newly proposed Hybrid-VL fuses

the same SD and LD used in Hybrid-VLDL but it exploits a NN based training instead to

fuse matching results of these descriptors in post-processing level. In this way, we directly

obtain a best trained NN model that produces automatically tuned hybrid descriptor for

an image without making any manual parameter tuning.

In accordance with this purpose, we design our own NN that includes

Convolution layers (CL) and a Fully Connected layers (FCL) as depicted in Figure 3.16.

This NN design was chosen among many examined differently designed NNs such as

just including FCLs or CLs or including them in different number, order and
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combination. While choosing this best NN design we considered their triplet loss

training performance on the test sets for both RobotCar Seasons and Malaga Streetview

Challenge data sets.

Figure 3.16. Triplet Loss NN design that contains 11 layers for Hybrid-VLFL method.

Triplet loss training procedure for Hybrid-VLFL and its implementation in this

study are demonstrated in Figure 3.17 and summarized below:

• Establish Triplet Loss NN framework: Use the designed Triplet Loss NN (Figure

3.16) that takes 1D (32K) image semantic and rgb descriptors as an input and

generates 1D (1024) hybrid location-aware learnt descriptor.

• Concatenate SD & LD representations: Note that here we used the SD (16K) and

LD (16K - PCA reduction from 32K) image representations resulted from LD-

VL with NetVLAD (Section 3.4.1) and SD-VL previously trained with triplet loss

(Section 3.4.2). In order to manage feature-level fusion, we concatenates SD(16K)

and LD(16K) image descriptor for each image in Train/Validation/Test sets. In this

way we gain the hybrid representation (32K) form of an image in order to use it as

an 1D input for our Triplet Loss NN.
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• Prepare the triplets for training: The most critical phase of triplet loss training is

choosing the right triplets (Anchor, Query, Negative) according the corresponding

TNS values. This triplet generation is applied as same as in Learnt descriptor

generation (Section 3.4) of Hybrid-VLDL method except for ‘online-generation’.

Here triplets are generated and stored ‘offline’ before training. This generation is

performed on each queries of Train-Validation-Test sets, which computes the

nearest (Eq. 3.2) positive and the 10 hard negatives (Eq. 3.5) for each query

according to previously determined TNS threshold. Note that, we work on

concatenated hybrid descriptors (32K) instead of images. To give an example, if

we have 145 train queries we generate 4350 (145*3*10) training triplets with hard

negative sampling (1A 1P 10N); then our final training matrix becomes [4350 x

32K].

• Take the training and validation sets: Because we have limited number of queries

in Train sets of RobotCar Seasons and Malaga Streetview Challenge data sets, we

added the hybrid descriptors (32K) of Validation set to the hybrid descriptors

(32K) of training set. By the way, we could enrich our training sets for our

Hybrid-VLFL method like that: [((NumberOfTrainQueries ∗ 3 ∗ 10) +

(NumberOfV alidationQueries ∗ 3 ∗ 10)) x 32K].

• Initialize the training: All queries in training set (concatenated Train and Validation)

are in triplet forms (1A 1P 1N). The Triplet Loss (Eq. 3.4) is calculated and the

backpropagation algorithm is performed for all the subsets of queries set.

• Extracting learnt hybrid descriptor: The trained model is employed on both the

database and query images of test data set. As a result of this feature extraction, we

gain the 1D (1024) hybrid location-aware learnt descriptors. Then, like using a SD

or LD descriptor as being in Section 3.4.1 and Section 3.4.2, this newly proposed

learnt representation is integrated with our ANN image matching method and

named as Hybrid-VLFL method. As a result, pre-determined k number of nearest

candidate images are automatically returned respectively for a given each test

query image and accepted as a feature-level hybrid matching results.
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Figure 3.17. Illustration of triplet loss training procedure for Hybrid-VLFL and its

implementation detail.

These training steps implemented and adjusted in this study were originally

developed in Matlab Deep Learning Toolbox. Our trainings on our Triplet Loss NN have

been done in GPU mode with the given configurations:

– Base model: Triplet Loss NN (Figure 3.16) ;

– Training Loss: NetVLAD (Arandjelovic et al., 2016) triplet ranking loss as defined

in Equation 3.4 ;

– Layers Name: 2 CLs + 2 FCLs + Triplet Loss Layer;

– Trainable Layers: whole layers with nearly 400 hundred million total learnables;

– Optimizer: Stochastic Gradient Descent (SGD) ;
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– Layers Weight initializer: Initialize the input weights with the ‘Glorot’ initializer

(Glorot and Bengio, 2010);

– Learning rate: 0.01;

– Momentum: 0.99;

– Weight decay: 0.9;

– Margin: 0.2

– Number of Epochs: 15;

– Batch size: 10 tuples (each tuple contains the query, the positive and at most 10

negatives);

– TNS: 25 / 70 (w.r.t. data set) meter threshold for choosing negative samples;

The parameters above had already been examined to reach the best Triplet Loss

training performance for the Hybrid-VLFL method and their best results are given in

Section 4.5. Also TNS options were kept up same for each data set as they were used in

Learnt descriptor generation (Section 3.4) of Hybrid-VLDL method.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, performance of the proposed Hybrid-VL methods are compared

with the corresponding LD and SD based VL methods with several experiments. These

case studies were carried out on different traversals of RobotCar Seasons and newly

created streetview traversal of Malaga Streetview Challenge data sets.

First of all, initial promising decision-level hybrid result is demonstrated by

means of the proposed hand crafted SD and LD VL methods (non-learnt) which are

introduced in Section 3.3. After reaching the first promising hybrid results with these

early stage experiments, we displayed the necessity of a location-aware descriptor based

VL methods with the following experiments. Consequently, decision-level hybridization

success of learnt descriptor based SD-V LLearnt and LD-V LNetV LAD methods (Section

3.4) is examined on the each data sets. Additionally, feature-level hybridization results

for learnt descriptors also examined and compared under the same conditions with

decision-level one. Note that, every individual Hybrid-VL method in this chapter

incorporated different type of SD and LD descriptors for k=10 candidates while repeated

the different types of hybridization approach proposed in Section 3.5.1 and Section

3.5.2. Configuration details of these Hybrid methods, from feature extraction to used

data set, is given where they are performed in the following sections.

Also, before considering on experimental studies, we will give a brief explanation

on used software and equipment. In this study, all implementations were conducted with

MATLAB R2019b in Ubuntu operating system. In addition for enhancing the running

time performance, MATLAB allows us to rewrite the any time consuming part of our

MATLAB methods with using C / C++ codes. From the side of used equipment, our

CNN based models were trained on NVIDIA™ Titan XP with 12 GB of memory and its

higher compute capability which is also supported with 16 GB Random Access Memory.
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4.1. Evaluation Metrics

In this study, GPS based metric error computation was applied in order to evaluate

the performance of SD-VL, LD-VL and Hybrid-VL methods. It is already described,

each database and query image is associated with an accurate GPS position (Latitude

Longitude in decimal degree), which is in WGS84 geographic coordinate system. It is

known Google Maps also works with WGS84 geodetic datum. The distance between

two locations were computed using Haversine formula (Inman, 1849; Veness, 2002) that

returns the distance in meter. However, just using GPS coordinates of the query image as

ground truth to measure localization accuracy will be unreliable. Because this type of a

error computation is not fairly penalized; similar mismatching cases will cause the very

different meter error. Therefore we followed the standard place recognition evaluation

procedure (Arandjelovic et al., 2016; Arandjelović and Zisserman, 2014; Germain et al.,

2018; Piasco et al., 2019; Sattler et al., 2012; Torii et al., 2015). The query image is

accepted correctly localized if at least one of the top N retrieved database images is within

a given D meters threshold (radius) from the ground truth position of the query. The

percentage of correctly localized queries (Recall) is then plotted versus different values

of N and D, these two type of evaluation metrics are explained below:

• Recall @N: Percentage of well localized queries is plotted with respect to the N

number of returned candidates. A query is considered well localized if one of the

top N retrieved images lies inside the 25m radius of the ground truth query position.

• Top-1 recall @D: Distance between the top ranked (1st) returned database image

position and the query ground truth position is calculated. Then the percentage of

queries with distances less than a fix threshold D (changing from 5 to 150 meter) is

plotted like in the related works.
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4.2. Hybrid-VLDL with Non-Learnt Descriptors

Most successful appearance based localization methods typically rely on a large

database of views represented with image descriptors and struggle to retrieve the views

of the same location. The quality of the results is often affected by the density of the

reference views (database images) and the robustness of the image representation with

respect to viewpoint variations, clutter and seasonal changes.

First of all, we cut in half the Malaga Downtown (31443) (Section 3.1) and used

half of them as a query set (15721) and rest of them as a database images. When a basic

image retrieval task is employed by LD-V LSURF method (k = 1) on these reduced new

sets, we observed that there is no mismatching case. In other words, even this hand crafted

VL system finds the best matching images for a given queries. This fact actually results

from the trade-off between the density of this data set (high rate with 20fps) and VL

performance. Therefore we need more sparse data set to reflect real life cases VL task,

because high rate sequential images are not available in normal life. In order to make the

right reduction of the density in the Malaga Downtown data set, we generated a basic case

study.

In this case initially, every sequential 20th images were picked up which provides

us nearly 5 meter distance between sequential images. This decreased sub set was named

as Malaga Downtown Base data set that contains 1571 images. Then two sub sets

(database-query) are derived by reducing the image number again. We selected the every

sequential 3rd image as a query and named it as Set1 (1048 database images- 523

queries), further reduced the Set1 by discarding one of each two images which is named

as Set2 (524 database images- 523 queries). When we implemented LD-V LSURF

method (k=1) on these sets for image retrieval task, our hand crafted method starts to

miss best matching images as depicted in Figure 4.1. In this figure, mismatching image

samples are directly penalized with their distance to query images in meter, in order to

visualized the matching case in descending order. It is clearly seen, more sparser data set

(Set2) inevitably gives rise to poor VL performance with two times more mismatching

images against the more denser one (Set1).

Under the light of this case study, in order to observe the success of our methods
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Figure 4.1. Mismatching image samples in descending order according to GPS error

with implementation of LD-V LSURF method (k = 1) on Set1 and Set2.

against sparsely provided reference images, we generated our Malaga Streetview

Challenge data set as described in 3.1. In this data set the Malaga Downtown Base set is

accepted as database images (1571) while collected Google Streetview set is accepted as

query images (436). This newly generated challenging set serves us not only a sparser

images with nearly 5 meter interval between sequential images by comparison with

RobotCar Seasons(nearly 1.5 meter intervals), but also short-long term changes (Table

3.1).

In order to examine our non-learnt Hybrid-VLDL methods on these data sets we

employed the previously described (Section 3.3) hand-crafted descriptor based VL

methods. Note that, we had already demonstrated the success of our initial Hybrid-VLDL

method (k=10) in our previous study (Çinaroğlu and Baştanlar, 2019) which incorporates

the LD-V LSURF and SD-V LLIBLABEL methods and examined on Malaga Streetview

Challenge data set. Next, on the purpose of improving the same hybrid method,

differently from our previous study we employed the proposed SD-V LPretSegNet

methods instead of using SD-V LLIBLABEL and visualized the result in Figure 4.2.

Result with Top-1 recall @D metric in this figure support our Hybrid-VLDL concept

with its superiority against the others, but it is clear we should need to employ more

robust VL methods from the side of each SD-VL and LD-VL. Because, they hardly

achieved correct localization for few query images (Top-1 recall@5 performance under

0.05) in every distance threshold (5m-150m) as depicted in this figure (Fig. 4.2).
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Figure 4.2. Superiority of Hybrid-VLDL methods (Top-1 recall@D) against the

other methods on Malaga Streetview Challenge data set (436) with

SD-V LPretSegNet and LD-V LSURF methods.

4.3. Hybrid-VLDL with Learnt LD-VL and Nonlearnt SD-VL

Results in the previous section shows that, we must improve the performance of

both SD-VL and LD-VL methods, in addition we also need to evaluate this improvement

on an another state-of-the-art data set. Therefore we preferred to used RobotCar Seasons

data set which is especially designed for VL challenge with its traversals that represent

different conditional changes with a low variance in viewpoint. The reason of this

preference among the many other VL data sets is already described detailed in Section

2.3.

After this preference, we firstly concentrated on improving the performance of

LD-VL method because of the poor performance (Fig. 4.2) of LD-V LSURF on Malaga

Streetview Challenge data set. On behalf of this aim, we preferred to construct our

baseline LD-VL method on a learnt descriptor which was trained on a CNN with

NetVLAD based triplet ranking loss for the purpose of localization task. Then we

incorporated this extracted learnt LD with our ANNS method which is named as

LD-V LNetV LAD. Advantages of using NetVLAD based triplet ranking loss had already
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been demonstrated in Section 2.1 with various recent studies, after all its popularity

definitely results form its grand success against changing environmental conditions.

While training our CNN network with triplet ranking loss for LD-V LNetV LAD method

we followed the same steps with the same configurations as represented in the Section

3.4. Nevertheless, there are also key parameters that we must underline because some of

them applied simultaneously to each data set while some of them will change according

to used data set.

Whole these learning was examined on separated parts as described in Section

3.1, which were created by dividing the prior map into geographically disjoint distinct 3

parts as training, validation and testing set for both data sets. Inequality of this separation

will inevitably affect the performance of LD-V LNetV LAD method, therefore at least 2

different division is generated for both data sets experiments. Then the average

performance of these divisions are accepted as a final result of LD-V LNetV LAD method.

Also note that, even faraway images can visualize the same scene with same objects. For

example, the Izmir Clock Tower can be visible from many faraway locations in Izmir.

Hence for the purpose of topometric localization task, we considered in this study such

image pairs as negative examples because they actually are not captured from the same

localization. This distinction is achieved owing to employing suitable TNS threshold

which is 25 meter for RobotCar Seasons data set and 70 meter for the Malaga Streetview

Challenge data set during their training processes. In order to be fair while training with

both data sets, the higher TNS threshold for the second data set is implemented because

of its sparse structure of database images (1571) with respect to first data set (6954). In

other words, on roads of the nearly same length (8km versus 10km) different numbers of

image collections cause a different sequential image intervals (1.5m versus 5m

respectively) for each data sets. As a result of this fact, all the best models for each data

set is achieved with these determined TNS thresholds. Furthermore, as it is given in

Table 2.1 both of the Malaga Streetview Challenge and RobotCar Seasons data sets have

less image collections in comparison with other examined data sets. Because, these data

sets especially reduced carefully from their extended versions (Section 3.1) in purpose of

making them more suitable for VL task. As a result of these reduced image numbers for

both data sets, we observed that selection of different base model (AlexNet & VGG16)
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for NetVLAD architecture directly influences the success of proposed VL methods in

our experiments. AlexNet (16K dimensional feature vector) based training provided a

better trained model rather than VGG16 (32K dimensional feature vector) for the each

data sets. Because AlexNet is more suitable for training on narrow data sets with its less

deeper architecture, this important preference is also underlined in many other

touchstone studies (Azizpour et al., 2015; Babenko et al., 2014). Therefore all the learnt

descriptor based VL’s in the following experiments are trained on AlexNet base model

regardless of the used data set.

Under the light of these given configuration, we firstly examined our new

Hybrid-VLDL method on the ‘Sun’ traversal (Table 3.1) of RobotCar Seasons data set

with incorporation of LD-V LNetV LAD and SD-V LPretSegNet methods. We divided it

(6954 database images-460 queries) into geographically disjoint distinct 3 parts like that,

training set (2318 database images - 180 queries), validation set (2318 database images -

142 queries) and test set (2318 database images - 138 queries) then examined both SD

and LD VL methods on the same divisions. Result of this Hybrid-VLDL method (Figure

4.3) displays that, on this new benchmark data set we achieved to increase performance

of our method with the learnt LD-V LNetV LAD against to SD-V LPretSegNet. This

improvement results in performance gap between these two SD-VL and LD-VL method

increases by nearly 0.35 Top-1 recall@5 value. As a fact of decision-level hybridization,

also the poor performance of SD-VL method pulls down the performance of

Hybrid-VLDL method.

In order to explore the reason of this poor localization performance of SD-VL

method, we employed the same SD-V LPretSegNet method on different traversals of

RobotCar Seasons data set as depicted in Figure 4.4. At the same time, we also

examined the possible effect of different horizon level on our pre-trained (CamVid)

SD-VL method in this figure. In line of this purpose, we generated the adjusted version

of each traversals, by resembling their horizon level to CamVid data set images. Figure

4.4 shows that, different traversal with different conditions influences the performance of

the SD-VL method because of the environmental changes (e.g. shining distortion). In the

line of these results, we decided on using the Overcast Winter traversal for our next

experiments because of its mid-level performance (magenta square in Figure 4.4). We
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Figure 4.3. Improved Top-1 recall@D performance of LD-VL method (LD-

V LNetV LAD) against the SD-VL method (SD-V LPretSegNet) on ‘Sun’

(138) traversal of RobotCar Seasons data set.

also see that SD-VL method on adjusted version of each traversals (yellow lines in Fig.

4.4) outperforms their not-adjusted versions (black lines) by near 0.2 Top-1 recall@5.

As a result of this effect, we learned that horizon level differences between the training

set of trained model SD-V LPretSegNet and test set causes a poor localization

performance. Therefore we used horizon-level-adjusted images in our future

experiments for each SD and LD VL methods.

Obtaining a improved LD-VL method is not enough for our Hybrid-VLDL

method as it is shown in Figure 4.3, in other words SD-V LPretSegNet method becomes

insufficient against learnt-LD methods. Hence, we were in hopes of increasing the

performance of SD-VL method by contribution of a more powerful semantic

segmentation method. This expectation led us employing more powerful semantic

segmentation model DeepLabv3+ as a state of the art semantic segmentation method,

which was invented by Google and meets with our expectation. Thus, instead of using its

pretrained version (‘Pretrained DeepLabv3+’) that had already been trained on Camvid

data set, we re-trained this model on our RobotCar Seasons data set. On the other side,

we had already observe the negative influence of difference in horizon level between the
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Figure 4.4. Top-1 recall@D performance comparison of different horizon level

impact on SD-V LPretSegNet method according to different traversals

(Sun,Overcast-Summer, Overcast-Winter) of RobotCar Seasons. Yellow

lines denote the horizon level ‘adjusted’ version of each traversals.

database and query images as depicted in Figure 4.4 on a different query traversal of

RobotCar Seasons data set. Therefore we re-trained DeepLabv3+ model on concatenated

collection of CamVid (horizon level of CamVid resembling to horizon level of RobotCar

Seasons) and RobotCar Seasons data set. In Section 3.2, detailed re-training steps of

DeepLabv3+ is described, and superior performance of ‘DeepLabV3+ Retrained-2’ in

semantic segmentation is depicted in Figure 3.8 and Figure 3.9. And this superior

segmentation model based non-learnt VL method is named as SD-V LDeepLabV 3+_Retr2.

After all, we evaluated our new Hybrid-VLDL method on the Overcast-Winter

traversal (Table 3.1) of RobotCar Seasons data set with incorporation of

LD-V LNetV LAD and SD-V LDeepLabV 3+_Retr2 methods. Note that, we applied the same

division criteria on Overcast-Winter (6954 database images-460 queries) data set as

implemented on Sun traversal then trained the LD-V LNetV LAD method on training and
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validation sets. Result of the Hybrid-VLDL method on Overcast-Winter test set (130

images) is displayed in Figure 4.5 (lower one). In order to visualize the impact of our

powerful ‘DeepLabV3+ Retrained-2’ semantic segmentation model on VL, we

generated another Hybrid-VLDL method (left side one in Figure 4.5) that combines the

same LD-V LNetV LAD with SD-V LPretSegNet again examined on the same division of

Overcast-Winter traversal.

Figure 4.5. Limited contribution of the robust segmentation model based

SD-V LDeepLabV 3+_Retr2 method (right one) on Hybrid-VLDL regarding

to SD-V LPretSegNet method. Both hybrid methods are obtained with the

same LD-V LNetV LAD method on Overcast-Winter traversal of RobotCar

Seasons data set.

It is clear that in Figure 4.5, there is a little development in SD-VL performance

(0.02 Top-1 recall@5) between these two sub-figures which correspond to the

SD-V LPretSegNet (blue squares on left image) and SD-V LDeepLabV 3+_Retr2 (blue

squares on right image) methods. This comparative result between the left and right sub

figures shows that, segmentation success of ‘DeepLabV3+ Retrained-2’ is not reflected

to the VL success as much as we expected. In other words, expected improvement in

non-learnt SD-VL was not achieved by just changing our segmentation model with a

robust one. This ineffectiveness will be explained with this reason, both of the

segmentation model repeats the same poor segmentation performance simultaneously for

the same references and query images.
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4.4. Hybrid-VLDL with Learnt SD-VL

Inadequacy of using a ‘non-learnt’ SD-VL methods against the learnt

LD-V LNetV LAD method is demonstrated in previous section. In order to cope with this

inability, the same triplet ranking loss was implemented on semantically segmented

versions of images (database-query sets) belonging to RobotCar Seasons and Malaga

Streetview Challenge data sets as described in Section 3.4.2 detailed. By this way we

obtained our novel SD-VL called SD-V LLearnt that is based on the images semantically

segmented by ‘DeepLabV3+ Retrained-2’ model. During the training phase of

SD-V LLearnt method, the same configuration of LD-V LNetV LAD method are

implemented to be fair against this method. In a word, best trained models were achieved

again with the same base model (AlexNet with 16K dimensional feature vectors), TNS

threshold (25 meter for RobotCar Seasons and 70 meter for the Malaga Streetview

Challenge) and other configurations described as in previous section. Note that, we used

the same geographically disjoint divisions of both data sets for each of the VL methods.

After all, we examined our baseline Hybrid-VLDL method on the

Overcast-Winter traversal of RobotCar Seasons (145 Train, 113 Validation, 130 Test

queries) and Malaga Streetview Challenge (249 Train, 78 Validation, 111 Test queries)

data sets with incorporation of LD-V LNetV LAD and SD-V LLearnt methods. And

superiority of proposed Hybrid-VLDL method is evaluated with previously defined

evaluation metrics (Top-1 recall@D, Recall @N) in Figure 4.6 and Figure 4.7

respectively.

From the side of Top-1 recall@D evaluation metric, proposed decision-level

hybrid method is able to increase Top-1 recall@5 localization performance against the

LD-V LNetV LAD method by 11.6% and 4.5% on the both Overcast-Winter traversal of

RobotCar Seasons (left one) and Malaga Streetview Challenge (right one) data sets

respectively.

In addition, performance of the same proposed Hybrid-VLDL is evaluated with

Recall @N metric in Figure 4.7. Again, our approach achieved the best performances for

D=25m from the side of both data sets. Proposed hybrid methods is able to increase

Recall @1 localization performance against the LD-V LNetV LAD method by 4% and
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Figure 4.6. Superiority of proposed Hybrid-VLDL method that incorporates LD-

V LNetV LAD and SD-V LLearnt methods. Results represented with Top-1

recall@D evaluation metric on the Overcast-Winter traversal (left one) and

Malaga Streetview Challenge (right one).

5.4% on the both Overcast-Winter traversal of RobotCar Seasons (left one) and Malaga

Streetview Challenge (right one) data sets respectively.

Also I should underline that, fine-tuning the decision level hybridization by W

hyper-parameter is very important point. We should trust on the better VL method among

the SD-VL and LD-VL methods. The best results in Figure 4.6 and Figure 4.7 support this

inference with lower W values; W = 0.2 for RobotCar Seasons and W = 0.1 for Malaga

Streetview Challenge data set. We know that lower W value increases the importance of

LD-VL method in our decision-level hybridization. Under the line of these outcomes we

can conclude that, if we trust our LD-VL method more than SD-VL we can reach the best

Hybrid-VLDL results for both data sets. Results for varying values of W are demonstrated

in Section 4.6.

To sum up, experimental results indicate that the performance of the proposed

Hybrid-VLDL method is superior against the state-of-the-art baseline LD-VL method on

both examined data sets with respect to each evaluation metric. This performance

improvement is achieved owing to incorporating the distinguishing power of the relative

positions of the objects in a semantically segmented image with power of location-aware
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Figure 4.7. Superiority of proposed Hybrid-VLDL method that incorporates LD-

V LNetV LAD and SD-V LLearnt methods. Results represented with Recall

@N evaluation metric on the Overcast-Winter traversal (left one) and

Malaga Streetview Challenge (right one).

triplet ranking loss training. And remember that, fine-tuned-W parameter contributes this

achievement directly.

Furthermore, contribution of the SD-V LLearnt method to the Hybrid-VLDL is

also demonstrated in Figure 4.8 with sample cases in which LD-V LNetV LAD method

can not retrieve the correct images. Also sample cases where the Hybrid-VLDL fails but

the LD-V LNetV LAD does correctly localize are illustrated in Figure 4.9. These

image-pair based results in Figure 4.8 make us think that the proposed Hybrid-VLDL

method is more successful while localizing in contrast (database vs query images)

weather scenarios. To investigate the impact of localizing in contrast weather conditions,

same Malaga Streetview Challenge 111 test queries were separated into two subsets

according to lighting condition in images. 24 relatively sunny images are collected and

named as ‘Sunny Subset’ and rest of the relatively darker images are named as ‘Overcast

Subset’. Also we should remember that, Malaga Streetview Challenge database images

(nearly 523 images) had already been captured under overcast weather condition. After

all, we examined our baseline Hybrid-VLDL method on the Sunny (24 test queries) and

Overcast (87 test queries) subsets of Malaga Streetview Challenge against its Overcast

database images with incorporation of LD-V LNetV LAD and SD-V LLearnt methods.
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And superiority of proposed Hybrid-VLDL method is depicted with the Top-1 recall@D

evaluation metric in Figure 4.10. But more important than that for this experiment,

results in this Figure 4.10 support our initial opinion on localizing in contrast weather

scenarios. To explain further, although there are limited number of images in the Sunny

subset (right one in Figure 4.10) the SD-V LLearnt method (blue square) has given better

result than the LD-V LNetV LAD method (red cross). The point to be noted here, while the

Hybrid-VLDL method on the Overcast subset (left one in Figure 4.10) owes its success

to the LD-V LNetV LAD method (W=0.1), on the other hand Hybrid-VLDL method on the

Sunny subset (right one in Figure 4.10) owes its success to the SD-V LLearnt method

(W=0.9).

Figure 4.8. Superiority of proposed Hybrid-VLDL method with three sample

localization cases from both data sets. RGB image based method LD-

V LNetV LAD (left) fails but Hybrid-VLDL (right) accomplishes for a given

query (middle)
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Figure 4.9. Sample three cases where the Hybrid-VLDL fails but the LD-V LNetV LAD

does correctly localize. Hybrid-VLDL (left) fails but LD-V LNetV LAD

(right) accomplishes for a given query (middle)

4.5. Hybrid-VLFL with Learnt SD-VL

All the experimental hybrid results demonstrated until this section are

implemented by Hybrid-VLDL method which depend on W hyper-parameter. In this

section, results of the proposed Hybrid-VLFL method (described in Section 3.5.2) that

produces automatically tuned hybrid results are given for the both data sets.

I should note that, all these experiments were carried out with the same SD (16K)

and LD (16K - PCA reduction from 32K) learnt-descriptors which were also combined

in the Hybrid-VLDL method in the previous section experiments. Also the same TNS

thresholds (25 meter for RobotCar Seasons and 70 meter for the Malaga Streetview

Challenge) were applied while training our Triplet Loss NN, and experiments were

conducted on the same partition of both data sets with previous section. We provided the

same conditions with Hybrid-VLDL method, because we were looking for that whether
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Figure 4.10. Impact of localizing in contrast weather conditions for the Hybrid-VLDL

method on the subsets of Malaga Streetview Challenge. Results are

represented with Top-1 recall@D evaluation metric on the Overcast (87

test queries) subset (left one) and the Sunny (24 test queries) subset(right

one).

Hybrid-VLFL method achieves the same or better performance without any manual

hyper-parameter tuning. Furthermore, we stuck to all implementation steps and settings

described in Section 3.5.2.

After all, we examined our baseline Hybrid-VLFL method on the

Overcast-Winter traversal of RobotCar Seasons (145 Train, 113 Validation, 130 Test

queries) and Malaga Streetview Challenge (249 Train, 78 Validation, 111 Test queries)

data sets with incorporation of LD-V LNetV LAD and SD-V LLearnt methods. Hence as it

is described in Section 3.5.2, best models were trained on these training triplets

generated with hard negative sampling (1A, 1P, 10); [7740 x 32K]

([((145 ∗ 3 ∗ 10) + (113 ∗ 3 ∗ 10)) x 32K]) and [9810 x 32K]

([((249 ∗ 3 ∗ 10) + (78 ∗ 3 ∗ 10)) x 32K]) for our RobotCar and Malaga data sets

respectively. And comparison of proposed Hybrid-VLFL method with Hybrid-VLDL is

carried out with previously defined evaluation metrics (Top-1 recall@D, Recall @N) in

Figure 4.11 and Figure 4.12 respectively.

With Top-1 recall@D and Recall @N (D=25m) evaluation metrics, Hybrid-VLFL

(black circle) method displays slightly poorer performance in comparison with Hybrid-
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Figure 4.11. Performance comparison of proposed Hybrid-VLFL method against the

tuned-with-W-parameter Hybrid-VLDL one. LD-V LNetV LAD and SD-

V LLearnt methods are incorporated and results are represented with Top-1

recall@D evaluation metric on the Overcast-Winter traversal (left one) and

Malaga Streetview Challenge (right one).

VLDL (magenta triangle) on Overcast-Winter traversal of RobotCar Seasons (left sides of

each figures). However we can see that Hybrid-VLFL method displays significantly worse

performance on Malaga Streetview Challenge (right sides of each figures) when compared

to Hybrid-VLDL. Poor performance of Hybrid-VLFL on Malaga Streetview Challenge

can be explained with its sparse database images (1571 images for 8km trajectory) with

respect to RobotCar Seasons data set(6954 images for 10km trajectory). Collecting a

denser database images on the same path may increase the performance of Hybrid-VLFL

on Malaga Streetview Challenge.

To sum up, very close performance of automatically tuned Hybrid-VLFL method

(especially on Overcast-Winter traversal of RobotCar Seasons) compared to the Hybrid-

VLDL method supports the reliability of the manually tuned-with-W-parameter Hybrid-

VLDL methodology.
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Figure 4.12. Performance comparison of proposed Hybrid-VLFL method against the

tuned-with-W-parameter Hybrid-VLDL one. LD-V LNetV LAD and SD-

V LLearnt methods are incorporated and results are represented with Recall

@N evaluation metric on the Overcast-Winter traversal (left one) and

Malaga Streetview Challenge (right one).

4.6. Ablation Study

The results given in the previous subsections are the best ones obtained among

the numerous trials with different experimental settings. In this section some important

empirical results are demonstrated in order to convey the sense of what and why we

choose these settings. At the same time, inferences are presented that may be useful for

those who will repeat similar experiments.

We know that Hybrid-VLDL method is based on W hyper parameter and impact

of this parameter is examined in this paragraph. Implementation detail of Hybrid-VLDL

and its tuned-with-W-parameter results are given in Section 3.5.1 and Section 4.4

respectively. Thanks to the ’W’ parameters we are able to tune the contributions of

SD-VL and LD-VL in the decision-level hybridization. And importance of fine-tuning

with ’W’ hyper- parameter had already been underlined in previous sections. Logically,

we should trust on the better VL method among the SD-VL and LD-VL methods. This

inference is approved in Figure 4.13 and Figure 4.14 with varying ‘W’ values for each
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data set. The best Hybrid-VLDL results are acquired by increasing the importance of

LD-VL method for both Overcast-Winter traversal of RobotCar Seasons (W=0.2) and

Malaga Streetview Challenge (W=0.1) data sets as we expected. When we trust more on

SD-VL with higher W value, performance of Hybrid-VLDL method decreases.

In Section 3.5.2 we proposed the Hybrid-VLFL method in order to obtain better or

same result with the Hybrid-VLDL method. However, results in Section 4.5 show up the

poor performance of this feature-level fusion method on both of the data sets (very close

performance for Overcast-Winter traversal of RobotCar Seasons and worse performance

for Malaga Streetview Challenge) with both evaluation metrics. Therefore, we wondered

if we could increase the success of this hybrid method. In accordance with this purpose,

we redesigned our Triplet Loss NN layers which takes 4K (1D) sized descriptor instead

32K and again outputs 1024 (1D) sized representation. So that before training our Hybrid-

VLFL method, feature dimension of training and test sets are decreased with Principal

Component Analysis (PCA). Impact of the dimensional reduction on Hybrid-VLFL is

demonstrated for both data sets with respect to Top-1 recall@D and Recall @N evaluation

metrics in Figure 4.15 and Figure 4.16 respectively. These results clearly figure out that

dimensional reduction (from 32K to 4K) decreases the success of Hybrid-VLFL from the

side of both metrics.
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Figure 4.13. Importance of fine-tuning in Hybrid-VLDL method on Overcast-Winter

traversal of RobotCar Seasons data set with varying W hyper-parameters.

Best hybridization result (top row one) is gained with higher contribution

of LD-VL (W=0.2).

80



Figure 4.14. Importance of fine-tuning in Hybrid-VLDL method on Malaga Streetview

Challenge data set with varying W hyper-parameters. Best hybridization

result (top row one) is gained with higher contribution of LD-VL (W=0.1).
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Figure 4.15. Impact of the dimensional reduction (from 32K to 4K) on Hybrid-VLFL

method is demonstrated for both data sets with respect to Top-1 recall@D

metric. Dimensional reduction decreases the success of Hybrid-VLFL

method.

Figure 4.16. Impact of the dimensional reduction (from 32K to 4K) on Hybrid-VLFL

method is demonstrated for both data sets with respect to Recall @N

metric. Dimensional reduction decreases the success of Hybrid-VLFL

method.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis we proposed Hybrid-VL methods based on semantic segmentation

to improve localization performance. Firstly, semantic information is extracted from

equally divided parts of semantically segmented images as a novel hand crafted semantic

descriptor (SD) for VL in 2D-2D matching space which is called as non-learnt SD-VL.

Differently from the first one, a new SD is trained with a triplet ranking loss based CNN

model using semantically segmented images, then this captured semantic representation

is used directly for VL that is named as learnt SD-VL method. Also, both query and

database images are segmented by applying the up-to-date CNN based semantic

segmentation method DeepLabv3+.

Secondly, manually tuned-with-W-parameter Hybrid-VLDL method is proposed

with combining the proposed learnt SD-VL and the baseline LD-VL methods in

post-processing stage. Additionally, Hybrid-VLFL method that is based on newly

designed NN trained with triplet loss is proposed in order to produce automatically tuned

hybrid result. Then improved localization performances is measured with frequently

used evaluation metrics on the benchmark RobotCar Seasons data set and newly

generated Malaga Streetview Challenge data set which will be useful to the community

of VL area. Also note that, the proposed localization approach is based on 2D-2D image

matching and their semantic segmentation results which is much cheaper than the

approaches that require the semantic 3D reconstruction of the environment.

Experimental results indicate that the performance of the proposed Hybrid-VLDL

method is superior against the state-of-the-art baseline LD-VL method on both examined

data sets. Proposed method is able to increase Top-1 recall@5 localization performance

by 11.6% and 4.5% on the RobotCar Seasons and Malaga Streetview Challenge data sets

respectively. Also our approach outperforms the baseline method for D=25m by a 4%

and 5.4% Recall @1 performances on both data sets again respectively. Furthermore,

reliability of our hyper-parameter (W) based Hybrid-VLDL approach is supported with
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the fact that very close performance is achieved with automatically tuned Hybrid-VLFL

method. Finally we can conclude that, proposed Hybrid-VLDL method achieved to

alleviate the shortcoming of the baseline method in such cases when it retrieves a wrong

image as a result.

As for the future work, employing different kind of descriptors (e.g. using depth

information instead of segmentation) would contribute to the success of this work. At

the same time, performing the proposed method on omnidirectional cameras will increase

the localization performance owing to its wide field of viewing angle. Moreover, success

of the Hybrid-VLFL method could be increased via finding more suitable NN to train

the feature-level hybrid descriptor. Furthermore, applying another non-linear machine

learning technique (such as SVM, Random Forest Learning etc.) instead performing a

CNN based one will also increase the performance of Hybrid-VLFL method.

Beyond all these technical evaluations I would like to share the experiences I

have gained during this study. We have automated the ground truth generation for

semantic segmentation via weakly-supervised segmentation method using a powerful

NN based segmentation model. This implementation saves more time than labeling

images manually. Also another important factor while building a segmentation-based

application is to consider horizon level difference. Because, horizon level difference

between training images used for pre-training a segmentation model and test images

limits the performance of segmentation in a bad way. Further showing up the success of

the proposed Hybrid-VLDL method which had already been within our expectations,

interestingly we discovered that semantic segmentation contributes more to the

Hybrid-VLDL method in cases where there is a contrast weather scenarios between

database and query images. This result may be valuable for other studies that will use

semantic segmentation. From start of this study to the end, I have witnessed how the

insane advancement in deep learning has shaped issues in the field of computer vision.

Despite all these changes in topics, we see that image-based localization studies

maintain their popularity as being on the first day and studies in this area continue

gaining more importance with the developments in autonomous vehicle driving.
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