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Abstract: This paper describes an approach to detect and classify vehicles in omnidirectional videos. The proposed 

classification method is based on the shape (silhouette) of the detected moving object obtained by background 

subtraction. Different from other shape based classification techniques, we exploit the information available 

in multiple frames of the video. The silhouettes extracted from a sequence of frames are combined to create 

an ‘average’ silhouette. This approach eliminates most of the wrong decisions which are caused by a poorly 

extracted silhouette from a single video frame. The vehicle types that we worked on are motorcycle, car 

(sedan) and van (minibus). The features extracted from the silhouettes are convexity, elongation, 

rectangularity, and Hu moments. The decision boundaries in the feature space are determined using a training 

set, whereas the performance of the proposed classification is measured with a test set. To ensure 

randomization, the procedure is repeated with the whole dataset split differently into training and testing 

samples. The results indicate that the proposed method of using average silhouettes performs better than using 

the silhouettes in a single frame. 

1 INTRODUCTION 

Omnidirectional cameras provide 360 degree 

horizontal field of view in a single image (vertical 

field of view varies). If a convex mirror is placed in 

front of a conventional camera for this purpose, then 

the imaging system is called a catadioptric 

omnidirectional camera (Fig. 1). Despite its enlarged 

view advantage, so far omnidirectional cameras have 

not been widely used in object detection and also in 

traffic applications like vehicle classification. This is 

mainly due to the fact that the objects are warped in 

omnidirectional images and techniques that are 

developed for standard cameras cannot be applied 

directly.  

Object detection and classification is an important 

research area in surveillance applications.  Quite a 

variety of approaches have been proposed for object 

detection. A major group in these studies uses the 

sliding window approach in which the detection task 

is performed via a moving and gradually growing 

search window. Features based on gradient 

directions, gradient magnitudes, colors, etc. can be 

used for classification. A significant performance 

improvement was obtained with this approach by 

employing HOG (Histogram of Oriented Gradients) 

features (Dalal, and Triggs, 2005). Later on, this 

technique was enhanced with part based models 

(Felzenszwalb et al., 2008). 

In some recent studies, the sliding window 

approach has been applied to omnidirectional 

cameras as well. Cinaroglu and Bastanlar (2014) 

modified HOG computation for omnidirectional 

camera geometry. Haar-like features are also used 

with omnidirectional cameras (Dupuis et al., 2011; 

Amine Iraqui et al., 2010).  

Another major group for object detection uses 

shape based features after background subtraction 

step. For instance, Morris and Trivedi (2006a, 2006b) 

created a feature vector consisting of area, breadth, 

compactness, elongation, perimeter, convex hull 

perimeter, length, axes of fitted ellipse, centroid and 

five image moments of the foreground blobs. Linear 

Discriminant Analysis (LDA) is used to project the 

data to lower dimensions. Objects are compared by 

weighted k-nearest neighbor classifier. Training set 

was made up by clustering prototype measurement 

vectors with fuzzy-C means algorithm. 



    
(a)             (b) 

Figure 1: (a) A mirror apparatus is placed in front of a 

conventional camera to obtain a catadioptric 

omnidirectional camera. (b) An example image obtained by 

such a camera. 

These two major approaches are compared in a study 

by Morris and Trivedi (2006b). HOG or Haar-like 

features are named as image based features and the 

features of the shape based approach are called image 

measurement based features. It was stated that using 

simple measurements extracted from the shapes is 

computationally cheaper. Extracting image based 

features for each position of sliding window requires 

a considerable amount of time. Also the storage 

requirement is much less with shape features. 

Regarding omnidirectional images, an extra load of 

converting original image to panoramic image (or 

conversion of features) is required. To decrease the 

computational load for image based features 

approach, one can extract features only for the region 

where the moving object exists. Even in that case, 

fitting a single window to the object is not possible. 

To give an example, in the study of Ghandi and 

Trivedi (2007), where HOG features are computed on 

virtual perspective views generated from 

omnidirectional images, the windows are located 

manually. These facts make the image based features 

unsuitable for real-time applications in most cases. 

We are also able to compare the performances of 

the mentioned two approaches on standard images. 

The accuracy of the HOG based method, by Ghandi 

and Trivedi (2007), is lower than the accuracy of 

shape based classification in their previous work 

(Morris and Trivedi, 2006a).  The classification 

accuracy is 64.3% for HOG based approach 

(accuracy is 34/36 for sedan, 17/34 for minivan and 

5/17for pickup) and 88.4% for shape based approach 

(accuracy is 94% for sedan, 87% for truck, 75% for 

SUV, 100% for semi, 90% for van, 0% for TSV and 

85% for MT). 

Motivated by the facts given above, we decided to 

develop a shape based method for omnidirectional 

cameras. Before giving the details of our method, let 

us briefly present more related work on shape based 

methods for vehicle classification. 

In one of the earliest studies on vehicle 

classification with shape based features, authors first 

apply adaptive background subtraction on the image 

to obtain foreground objects (Gupte et al., 2002). 

Location, length, width and velocity of vehicle 

fragments are used to classify vehicles into two 

categories; cars and non-cars. In another study, 

(Kumar et al., 2005), authors use position and 

velocity in 2D, the major and minor axis of the ellipse 

modelling the target and the aspect ratio of the ellipse 

as features in a Bayesian Network. 

In a 3-D vehicle detection and classification study 

which is based on shape based features, Buch et al. 

(2008) use the overlap of the object silhouette with 

region of interest mask which corresponds to the 

region occupied by the projection of the 3D object 

model on the image plane.  Although features like 

area, convex area, bounding ellipse axes or bounding 

box size are not used, the accuracy of the method is 

high. 

In a ship classification study, researchers use 

MPEG-7 region-based shape descriptor which 

applies a complex angular radial transform to a shape 

represented by a binary image and classified ships to 

6 types with k-nearest neighbor algorithm (Luo et al., 

2006).  

Instead of standard video frames, some 

researchers employed time-spatial images, which are 

formed by using a virtual detection line in a video 

sequence. Rashid et al. (2010) construct a feature 

vector obtained from the foreground mask. Employed 

features are width, area, compactness, length-width 

ratio, major and minor axis ratio of fitted ellipse, 

rectangularity and solidity. The training set is 

clustered in desired number of vehicle classes by 

fuzzy C-means algorithm. The samples are classified 

by k-nearest neighbor algorithm. Later, they 

improved their work using multiple time spatial 

images (Mithun et al., 2012).  

Although not applied to vehicle classification, a 

radically different method that uses silhouettes was 

proposed by (Dedeoglu et al., 2006). They define 

‘silhouette distance signal’ which is the sum of 

distances between center of a silhouette and contour 

points. They create a database of sample object 

silhouettes with manually labelling object types. An 

object is classified by comparing its silhouette 

distance signal with the ones in the template database. 

Regarding the shape based classification studies 

with omnidirectional cameras, the only work that we 

found in the literature (Khoshabeh et al., 2007) uses 

only the area of the blobs and classifies them into two 



classes; small and large vehicles. In our study, we 

detect each vehicle type separately using a higher 

number of features.  

The main contribution in our study can be 

considered as exploiting the information available in 

multiple frames of the video. The silhouettes 

extracted from a sequence of frames are combined to 

create an ‘average silhouette’. This process is known 

as ‘temporal averaging of images’ in image 

processing community and usually used to eliminate 

noise. To our knowledge, the proposed method is the 

first that combines several silhouettes for object 

detection/classification.  

Another contribution in this paper is that we use a 

portable image acquisition platform which is more 

practical than fixing the cameras to building facades. 

Previous work, that employ cameras fixed to 

buildings, use “area” as a feature to classify vehicles 

(Morris and Trivedi (2006a, 2006b), Khoshabeh et al. 

(2007), Buch et al. (2008), Rashid et al. (2010)).  

Since that feature becomes invalid when the distance 

between the camera and the scene objects change, 

those methods are not versatile. As a consequence, in 

our method area of the silhouette is not a feature.  

The vehicle types that we worked on are 

motorcycle, car (sedan) and van (minibus). The 

features extracted from the silhouettes are convexity, 

elongation, rectangularity, and Hu moments. The 

convexity is used to eliminate poor silhouette 

extraction, the elongation is used to distinguish 

motorcycles from other vehicles, and the remaining 

two features (rectangularity and a distance based on 

Hu moments) are used for labelling an object as a car 

or a van. The decision boundary is obtained by 

applying Support Vector Machines (SVM) on the 

training dataset. The performance of the proposed 

approach is compared with the results of using 

silhouettes in a single frame. Using the average 

silhouette rather than using a single frame (not 

averaging) improved the rate of correct classification 

from 80% to 95% for motorcycle, from 78% to 98% 

for car, and from 81% to 83% for van.  

Our omnidirectional video dataset, together with 

annotations and binary videos after background 

subtraction, can be downloaded from our website 

(http://cvrg.iyte.edu.tr/). The organization of the 

paper is as follows. In Section 2, we introduce the 

details of silhouette averaging process. Vehicle 

detector is described in Section 3 and classifier is 

presented in Section 4. Experiments, given in Section 

5, demonstrate that the proposed method of averaging 

silhouettes outperforms using a single silhouette. 

Conclusions are given in Section 6. 

2 SILHOUETTE AVERAGING 

The silhouettes are obtained after a background 

subtraction step and a morphological operation step. 

For background subtraction, the algorithm proposed 

by Yao and Odobez (2007) is used, which was one of 

the best performing algorithms in the review of 

Sobral and Vacavant (2014). The final binary mask is 

obtained by an opening operation with a disk, after 

which the largest blob is assigned as the silhouette 

belong to the moving object. 

To obtain an ‘average silhouette’ we need to 

define how many frames are used and the silhouettes 

from these frames should coincide spatially. If a 

silhouette is in range of a previously specified angle 

(which we set as [30°,-30°], and 0° is assigned to the 

direction that camera is closest to the road), then the 

silhouette is rotated with respect to the center of 

omnidirectional image so that the center of the 

silhouette is at the level of the image center. This 

operation, also described in Figure 2, is repeated until 

the object leaves the angle range.  

 

 

  
 

Figure 2: Top: An example omnidirectional video frame 

containing a van while passing a road. Bottom-left: The 

same frame after background subtraction. Also the angle 

range that we used, namely [30°,-30°], is superimposed on 

the image. Centroid of the largest blob is at 29°. Bottom-

right: Rotated blob after morphological operations.  



Silhouettes obtained in the previous step are added to 

each other so that the center of gravity of each blob 

coincides with others. The cumulative image is 

divided by the number of frames which results in 

‘average silhouette’ (Figure 3). We then apply an 

intensity threshold to convert average silhouette to a 

binary image and also to eliminate less significant 

parts which were supported by a lower number of 

frames. Thus we can work with more common part 

rather than taking into account every detail around a 

silhouette. The threshold we select here eliminates the 

lowest 25% of grayscale levels. 

 

    
              (a)         (b) 

    
              (c)        (d) 

                 
              (e)        (f) 

 

Figure 3: Example binary images when the centroid of the 

object is at (a) 29° (b) 26° (c) 0° (d) -11° (e) -29°. (f) 

Resultant ‘average silhouette’ obtained by the largest blobs 

in the binary images.  

 

3 DETECTION 

The convexity (1) is used to eliminate detections that 
may not belong to a vehicle class or poorly extracted 
silhouettes from vehicles. 

 

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = 

𝑂𝐶𝑜𝑛𝑣𝑒𝑥ℎ𝑢𝑙𝑙 

𝑂
   

(1) 

 

where 𝑂𝐶𝑜𝑛𝑣𝑒𝑥ℎ𝑢𝑙𝑙  is the perimeter of the convex hull 

and 𝑂 is the perimeter of the original contour (Yang 

et al., 2008). Since we do not look for a jagged 

silhouette, the set of detected silhouettes {𝐷𝑠} is 

filtered to obtain a set of valid detections {𝐷𝑣} (2) 

using the convexity threshold 𝜌.  

{𝐷𝑣}= {𝐷𝑠|𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐷𝑠
< 𝜌}  (2) 

 

We set 𝜌 = 0.75 for our experiments. The set of valid 

detections {𝐷𝑣} is passed to the classification step. An 

example is shown for an eliminated silhouette using 

convexity threshold in Figure 4.  

 

Figure 4: An example of an extracted silhouette and its 

convex hull. It is extracted from a motorcycle example 

using a single frame and its convexity is computed as 0.73 

which is lower than the threshold 𝜌 = 0.75. 

Block diagram in Figure 5 summarizes the detection 

step together with the classification step which is 

described in Section 4. Please note that with the 

proposed multi-frame method, morphological 

operations are carried out for multiple frames and 

thresholded average silhouette is given as an input to 

the detection and classification steps. For the single 

frame method, however, the silhouette from the frame 

where the object is closest to 0° is used. 



Figure 5: Block diagram of the detection and classification 

system. With the proposed method, multiple frames are 

processed and the extracted average silhouette is used 

instead of a silhouette from a single frame. 

4 CLASSIFICATION 

Next, the valid detections determined by the detection 

step are classified (cf. Figure 5). The features we 

employ for classification are; elongation, 

rectangularity, and Hu moments. Elongation (3) is 

computed as follows 

 

Elongation = 1 – W/L (3) 

 

where W is the short and L is the long edge of the 

minimum bounding rectangle (Figure 6) which is the 

smallest rectangle that contains every point in the 

shape (Yang et al., 2008).  

 

 

Figure 6: Thresholded silhouette and the minimum 

bounding rectangle.  

Rectangularity (4) measures how much a shape fills 

its minimum bounding rectangle (Yang et al., 2008):  

Rectangularity = AS / AL (4) 

 

where AS represents area of a shape and AL represents 

area of the bounding rectangle. 

 We observed that the elongation is able to 

discriminate motorcycles from other vehicle types 

with a threshold. Then, the set of detected 

motorcycles {𝐷𝑚} (5) is given by  

{𝐷𝑚}  ={𝐷𝑚|𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛𝐷𝑣
< 𝜏}  (5) 

 

where 𝜏 is the elongation threshold. 𝜏 is determined 

using the samples in the training set. 

 Rectangularity is a meaningful feature to 

distinguish between sedan cars and vans since the 

silhouette of a van has a tendency to fill its minimum 

bounding box. In our trials, however, we observed 

that setting a threshold for rectangularity alone is not 

effective enough to discriminate cars from vans. To 

discriminate the cars and vans better, we defined an 

extra feature, named 𝑃1 (8), which is based on Hu 

moments and measures if an extracted silhouette 

resembles the car silhouettes in the training set more 

than it resembles the van silhouettes. 𝑃1 is an 

exemplar-based feature rather than a rule-based one 

and it is computed as follows: 

 

𝐶1 = 
1

#𝑐𝑎𝑟𝑠
∑ 𝐼2( 𝐷𝑠 , 𝐶𝑎𝑟𝑖)#𝑐𝑎𝑟𝑠

𝑖=0    (6) 

 

𝑉1 = 
1

#𝑣𝑎𝑛𝑠
∑ 𝐼2( 𝐷𝑠, 𝑉𝑎𝑛𝑖)#𝑣𝑎𝑛𝑠

𝑖=0    (7) 

 

𝑃1 =𝐶1 − 𝑉1   (8) 

 

 For a new sample, 𝑃1 corresponds to the 

difference between the average 𝐼2  (10) distance to the 

cars in the training set and the average 𝐼2 distance to 

the vans in the training set. The mentioned 𝐼2  distance 



is one of the three possible distances, based on 7 Hu 

moments (Hu, 1962), used for computing the 

similarity of two silhouettes: 

 

I1 (A,B)= ∑ |
1

𝑚𝑖
𝐴 −

1

𝑚𝑖
𝐵|𝑖=1…7  

(9) 

 
I2 (A,B)= ∑ |𝑚𝑖

𝐴 − 𝑚𝑖
𝐵|𝑖=1…7  (10) 

 

I3 (A,B)= ∑ | 
𝑚𝑖

𝐴−𝑚𝑖
𝐵

𝑚𝑖
𝐴 |𝑖=1…7  

(11) 

 
𝑚𝑖

𝐴 = 𝑠𝑖𝑔𝑛(ℎ𝑖
𝐴) ∙ log ℎ𝑖

𝐴   (12) 

 
𝑚𝑖

𝐵 = 𝑠𝑖𝑔𝑛(ℎ𝑖
𝐵) ∙ log ℎ𝑖

𝐵   (13) 

 

where ℎ𝑖
𝐴 and ℎ𝑖

𝐵  are the Hu moments of shapes A and 

B respectively (Bradski and Kaehler, 2008).  

 We select I2 since it achieved better 

discrimination in our experiments than  I1(9) and 

I3(11). 

 If a detection is not classified as a motorcycle, in 

other words Elongation > τ , then it can be either a 

car or a van. To determine the decision boundary 

between car and van classes we trained a SVM with 

linear kernel. The boundaries obtained using the 

training set are depicted in the following section.  

5 EXPERIMENTS 

Using a Canon 600D SLR camera and a mirror 

apparatus (www.gopano.com) we obtained a 

catadioptric omnidirectional camera. We constructed 

a dataset of 49 motorcycles, 124 cars and 104 vans 

totaling 277 vehicle instances. Dataset is divided into 

training and test sets. Training set contains 

approximately 60% percent of the total dataset 

corresponding to 29 motorcycles, 74 cars and 62 

vans. The rest is used as test set. 

We set 𝜌 = 0.75 and SVM’s parameter 𝐶 = 0.2 

for our training set. The elongation threshold is 

determined by choosing the maximum convexity 

value of motorcycles in the training set since this 

value discriminates motorcycles from other vehicles. 

Regarding the training of car-van classifier, 

Figures 7 and 9 show the SVM’s linear decision 

boundary, trained with the average silhouette and 

single frame silhouette respectively. Training the 

single frame method with the extracted single frame 

silhouettes would not be fair since they contain poorly 

extracted silhouettes. Therefore, the boundaries of the 

vehicles are manually annotated and used for the 

training of single frame method.  Test results with and 

without averaging silhouettes are shown in Figures 8 

and 10 respectively. 
 

 

Figure 7: Training result of SVM using the average 

silhouette method.  

 

Figure 8: Test result with the average silhouette method. 

 

Figure 9: Training result of SVM without averaging 

silhouettes (single frame method).  

 

Figure 10: Test result without averaging silhouettes, i.e. 

using single frame silhouettes. 



Table 1: Average classification accuracies for each class 

when 𝜌 = 0.75 and 𝐶 = 0.2 for the average silhouette 

method and for the single frame method. 

 Motorcycle Car Van Overall 

Average 

silhouette method 

95% 98% 83% 92% 

Single frame 

method 

80% 78% 81% 79% 

Table 2: Confusion matrix for the proposed method of using 

average silhouettes. 

Ground truth Motorcycle Car Van 

D
et

ec
ti

o
n
 Motorcycle 19 0 0 

Car 0 49 1 

Van 1 1 35 

FN 0 0 6 

Table 3: Confusion matrix for single frame method. 

Ground truth Motorcycle Car Van 

D
et

ec
ti

o
n
 Motorcycle 16 3 4 

Car 0 39 1 

Van 1 7 34 

FN 3 1 3 

 

 
 (a)                           

   
            (b)                              (c)                           (d) 
 

Figure 11: Example car silhouettes (a) original frame, (b) 

result of using a single silhouette which is misclassified 

with rectangularity = 0.56 and 𝑃1 =  3.381, (c) average 

silhouette, (d) thresholded average silhouette classified as 

car rectangularity = 0.68 and 𝑃1 =  −1.602. 

To ensure the randomization of data samples, the 

procedure is repeated three times with the dataset split 

randomly into training and testing samples. We report 

the average results of the two compared methods in 

Table 1. Values in the table correspond to what 

percentage of the instances of a vehicle type is 

classified correctly. Not surprisingly, exploiting the 

information from multiple frames by averaging the 

silhouettes has a greater performance than using the 

silhouette in a single frame. 

Tables 2 and 3 depict the number of correctly 

classified and misclassified samples for each class 

with the average silhouette and single frame 

silhouette methods respectively. False negatives are 

missed samples which are eliminated by convexity 

threshold 𝜌 , i.e. non-valid detections. 

Figure 11 shows an example where a car is 

correctly classified with using average silhouette, 

whereas it is misclassified with using a single 

silhouette. Figure 12 shows an example where a van 

has passed the detection phase with average silhouette 

method but failed with the single frame method. Such 

cases constitute the main performance difference 

between the two compared methods. 

 

      
(a)       (b)                      (c) 

 

Figure 12: Example van silhouettes (a) silhouette from a 

single frame which is eliminated since 𝜌 = 0.548.(b) 

average silhouette (c) thresholded average silhouette which 

is not eliminated since.𝜌 = 0.823.  

6 CONCLUSIONS 

We proposed a method for vehicle detection and 

classification based on a set of features extracted from 

object silhouettes. We applied our method by using a 

silhouette from a single frame and also by using 

temporal average of silhouettes in multiple frames. 

Our hypothesis was that the classification with 

average silhouettes of multiple frames is more 



successful than using a silhouette from a single frame. 

Results of the experiments indicate a significant 

improvement in classification performance using 

multiple frames. 

Although we applied the proposed method for 

vehicles, in essence the advantage of averaging 

silhouettes is utilizing the information available in a 

longer time interval rather than a single frame. 

Therefore the improvement can be expected for other 

objects types and domains other than traffic 

applications. 

We use a portable image acquisition platform and 

our method is independent of the distance between 

the camera and the objects which is more practical 

than the previously proposed methods that fix the 

cameras to buildings and use the object’s area as a 

feature since the distance to objects stays same. 
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