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Abstract: Hyperspectral imaging systems provide dense spectral information on the scene under investigation by collecting data
from a high number of contiguous bands of the electromagnetic spectrum. The low spatial resolutions of these sensors frequently
give rise to the mixing problem in remote sensing applications. Several unmixing approaches are developed in order to handle the
challenging mixing problem on perspective images. On the other hand, omnidirectional imaging systems provide a 360-degree
field of view in a single image at the expense of lower spatial resolution. In this study, we propose a novel imaging system
which integrates hyperspectral cameras with mirrors so on to yield catadioptric omnidirectional imaging systems to benefit from
the advantages of both modes. Catadioptric images, incorporating a camera with a reflecting device, introduce radial warping
depending on the structure of the mirror used in the system. This warping causes a non-uniformity in the spatial resolution which
further complicates the unmixing problem. In this context, a novel spatial-contextual unmixing algorithm specifically for the large
field of view of the hyperspectral imaging system is developed. The proposed algorithm is evaluated on various real-world and
simulated cases. The experimental results show that the proposed approach outperforms compared methods.

1 Introduction

Hyperspectral data analysis attracts the interest of researchers work-
ing in the fields of computer vision and remote sensing, because it
provides dense spectral information about the material to be moni-
tored. Remote sensing applications aim to monitor large observation
fields in a rapid way with a nondestructive manner. The existing stud-
ies on remote sensing and hyperspectral imaging applications utilize
the platforms which are mostly mounted on airborne or unmanned
air vehicles (UAV) in order to monitor large areas. However, air-
borne platforms have operational difficulties such as inappropriate
weather conditions, flight permissions, no fly zones, and costly air-
craft hire. In addition, UAVs have limitations on the load of the
imaging system containing heavy imaging hardware such as sensor
and processing unit. In this study, we aim to increase field of view
(FOV) of traditional hyperspectral imaging systems which use lenses
having narrow FOV. Therefore, we contribute to existing hyperspec-
tral and multispectral imaging systems with providing a large field
of view. Fish-eye lenses, stitching several images captured by a nar-
row FOV camera, and catadioptric systems are examples for large
FOV imaging systems. Catadioptric cameras are the optical systems
in which refraction (lenses) and reflection (mirrors) are combined.
While these systems produce a deformation in the structure of the
image due to the convex mirror used in the system, they are able
to present 360 degree FOV in the horizontal plane. The term omni-
directional is used to denote that the light rays from all directions
are collected. In our work, we aim to benefit from hyperspectral
imaging and omnidirectional imaging technologies to obtain a cata-
dioptric omnidirectional hyperspectral camera, and to handle the
issues arising due to combining these technologies. There are very
few reported studies which use high spectral information for omni-
directional imaging. These studies are summarized in Section 2.
The low spatial resolution of the sensors frequently bring about
the mixing problem in hyperspectral imaging applications. Several
unmixing approaches are developed in order to handle the chal-
lenging mixing problem on perspective images. To our knowledge
ours is the first study that investigates the applicability of unmixing
algorithms for omnidirectional hyperspectral images. We propose
capturing a single omnidirectional image without requiring a prior
stitching step.

The performance of the image processing algorithms, the robust-
ness of the results and the detailed information provided by the
sensors are highly dependent on the increased spectral and spa-
tial resolution of the data. The conventional hyperspectral imagers
renounce the high spatial resolution in favor of the high spectral res-
olution. Today’s remote sensing technology on satellite and airborne
applications is limited with the constraints: data storage capacity, the
transmittance broadband between the imager and ground station, the
weight limit to be carried on [1]. These constraints cause to have
a lower spatial resolution which remains incapable of imaging the
object to be analyzed. In this case, the pixels captured in such sce-
nario may not purely contain a single material. The pixel signature is
mixed of the spectral signatures of the objects which are in the scene
that are spatially covered by the pixel. At that point, a sub-pixel level
analysis is needed, and this wide research area is termed as spectral
unmixing. Additionally, the pure spectral signatures of the materials
which exist in the scene, are called as endmembers.

The catadioptric hyperspectral image analysis requires differ-
ent unmixing approaches compared to the traditional hyperspectral
image analysis. In this study, some improvements specific to the
catadioptric images on unmixing algorithms are proposed. Although
we present a case which uses a catadioptric imaging system, our
proposed method is applicable to all systems where a spatial non-
uniformity occurs. This could be from any three dimensional scene
for which the near field object resolution is higher than that of the
far field as in the case of perspective cameras. As will be given in
Section 2, several recent publications indicate an interest in omnidi-
rectional hyperspectral systems and these systems are of interest in
their own right. In principle the proposed system can be applied to
all hyperspectral cameras but the mirror that is attached to the cam-
era should be an effective reflector for the spectral band sensed by
the camera. In our case, we had a stainless steel reflector that has a
steady spectral response in the VNIR region.

The proposed methods in this study are based on the spatial res-
olution of the pixels. Therefore, the literature on catadioptric image
formation are analyzed in depth. These studies enable us to compute
the spatial resolution factor of each pixel in the scene, and conse-
quently, to generate a map that illustrates the change on the spatial
resolution values.



Fig. 1: The proposed omnidirectional hyperspectral imaging sys-
tem consists of a convex (hyperboloidal) mirror and a hyperspectral
camera looking at the mirror.

The first proposed improvement is for integrating the spatial
resolution difference into the geometrical and spatial-contextual
unmixing methods. We also theoretically examined the contribution
of implementing the spatial resolution map into unmixing algo-
rithms. Another improvement is proposed for geometrical unmixing
approaches. We propose to rate the pixels in the convex structure
according to their spatial resolution factors. The last novel improve-
ment proposed in this study is a local spectral mixing analysis
approach. In the proposed method, we divide the scene according
to the catadioptric image formation.

The study is organized as follows: Section 2 introduces the basic
concepts, advantages, constraints, and application areas of both
technology: hyperspectral imaging and omnidirectional imaging.
Section 3.1 gives a simple introduction to catadioptric imaging prin-
ciples. We also investigate the spectral characteristic of the mirror
used in the omnidirectional imaging. Section Section 3.2 provides
the details of spatial resolution in a catadioptric system. Section 3.3
provides information about the unmixing problem, and state-of-the-
art algorithms. Section 4 includes the novel approaches specially
investigated for the proposed omnidirectional hyperspectral imag-
ing system. The evaluation of the proposed methods are given in
Section 5. The comparison of the methods with the state-of-the-art
algorithms are also shared in that section.

The source code and the catadioptric hyperspectral data set
acquired in this study is shared on https://github.com/
bdidem/Catadioptric-Hyperspectral-Imaging-An-
Unmixing-Approach.git, as our contribution to the commu-
nity.

2 RELATED WORK

A three-dimensional hyperspectral data cube is obtained by mea-
suring the spectral signature of each pixel. While the first two
dimensions represent the spatial domain of the scene, the third
dimension represents the data gathered from each spectral band.
Hyperspectral imagery is preferred in a wide array of remote sens-
ing applications. Improvements in sensor technologies enable to
lower costs and weight, and make the use of sensor more practical.
The proposed omnidirectional hyperspectral imaging system is illus-
trated in Fig. 1. The system is composed of a hyperspectral camera
and a hyperboloidal mirror, which makes it a catadioptric omnidi-
rectional camera. The scheme demonstrates a representation of an
omnidirectional hyperspectral data cube. It also shows a signature
gathered from a pixel in the data cube. A sample omni-hyperspectral
image acquisition setup is shown in the figure. Finally, an unwrapped
visualization of the omnidirectional image is given in the scheme.

As catadioptric systems can be composed of many planar mir-
rors [2], they can also benefit from single curved mirrors, where
paraboloidal and hyperboloidal mirrors are the most popular ones.
In this study we focus on catadioptric systems with a single mirror.

The study in [3] briefly explains single-viewpoint property of cata-
dioptric systems. The light rays coming from the scene and targeting
the focal point (single viewpoint) of the hyperboloidal mirror are
reflected on the mirror surface so that they pass through the pinhole
(camera center). On the other hand, paraboloidal mirrors reflect the
rays orthogonally and that’s why they require the use of a telecentric
lens to collect the parallel rays.

The application areas such as surveillance and simultaneous local-
ization and mapping (SLAM) highly need a system that is easy to
use, and captures wide field of view in a single image. Thus, it
enables fast analysis of the scene without need the installment of
several cameras with different angles. Aeromeccanica [4] presents
an unmanned aerial vehicle equipped with an omnidirectional cam-
era with two optics having more than 200 degree FOV. Additionally,
an infrared (IR) camera is also mounted on the drone.

Technest has been awarded by U.S. Navy Small Business Inno-
vative Research program with the project [5] “Real-Time Omni-
Directional Hyperspectral Imager”. The defined system uses com-
pact mega pixel IR and MWIR capable sensors and supposed to
capture a 360 degree FOV by using a rotating system that captures
180 degree FOV at a time. Similarly, a rotating spectral imaging
system is used to capture large FOV in the studies [6–8]. Hirai et
al. [6] combines three technologies: HDR, spectral and omnidirec-
tional imaging. They use an automatically rotating mechanism. An
RGB camera is supported by filters in order to acquire six band
multispectral data between 400 nm and 700 nm. They perform a
correction algorithm on spectral images to reduce the illumination
related noises. Karaca et al. [8] develops a multiband stereo match-
ing algorithm on a panoramic stereo hyperspectral imaging system.
Additionally, they perform a depth estimation on panoramic hyper-
spectral dataset. However, in this study, we propose to develop an
omnidirectional hyperspectral system that captures 360 degree FOV
in a single image without using a rotating mechanism.

Danilidis et al. [9] has filed a patent regarding a multispectral
and omnidirectional imaging system that contains a series of view
and reflecting mirrors for splitting the electromagnetic spectrum
into two or more bands, and corresponding cameras placed relative
to the reflecting mirrors. Although the system is innovative for its
time, its multispectral representation capacity is well behind today’s
technology.

In terms of hyperspectral omnidirectional imaging, there are few
previous studies. The closest work to ours, presented in [10], uses
3× 3 spectral coated catadioptric mirror grid. A plenoptic func-
tion records the radiance from the scene from every location, at
every angle, for every wavelength and at every time. They perform a
sparse representation on depth estimation problem by using the sys-
tem. However, the spectral density of their proposed system depends
on the number of coated mirrors, which is nine. Our work, on the
other hand, is entirely hyperspectral and we investigate unmixing
approaches in catadioptric domain for the first time.

Omnidirectional images introduce a radial warping due to the
structure of the mirror used in the system. As some of the studies
[11–14] develop algorithms without modifying the elliptic structure
of the scene, others [15–18] prefer to transform the image to the
panoramic view, and they work on linear representation. For the
applications where the spatial nonuniformity does not affect the per-
formance of the algorithm, we aim to avoid the costly process of
generating panoramic view. Thus, we benefit the spectral content of
the pixel without need of spatial linearity. Hyperspectral imaging
with its high spectral density adds value to remote sensing appli-
cations due to its spectral density rather than its provided spatial
information.

On the other hand, [19] and [20] are examples for large FOV
hyperspectral imaging systems with fish-eye lenses. In [19], the
spectral analysis of ecological light pollution is performed by using
full-spherical fish-eye lens imaging. Similarly, in [20], they per-
form a visible range hyperspectral monitoring of auroras by using
a fish-eye camera.



3 BACKGROUND

3.1 Catadioptric Image Formation

In the proposed system the spatial resolution decreases from periph-
ery of the omnidirectional image to its center. In this paper, we have
demonstrated this effect both theoretically and practically. Baker
and Nayar presented the single-viewpoint geometry of the catadiop-
tric image formation in their fundamental work [21]. They deeply
analyze the different mirror shapes which are used in the catadiop-
tric system. They include a preliminary analysis of the defocus blur
caused by the use of a curved mirror. An expression for the spatial
resolution factor of a catadioptric sensor is derived in the study. The
factor is based on a condition which assumes that while the mir-
ror is positioned in the effective viewpoint v, the camera must be
positioned in the effective pinhole p. In Fig. 2, the mirror geome-
try is illustrated in detail based on the studies in [21, 22]. The mirror
parameters are a, b and cwhere c is the distance between pinhole and
viewpoint in other terms the camera and the mirror, and c is given by
c = 2

√
a2 + b2. As described in [21], the resolution of the catadiop-

tric sensor is dA/dv where dA is the pixel area on the image and dv
is the infinitesimal solid angle viewing the world. The variables used
in the following equations are demonstrated in Fig. 2. The resolution
of the conventional camera was derived in [21] as:

dA

dω
=

u2

cos3 ψ
(1)

Then, the area of the mirror (dS) imaged by the infinitesimal area
(dA) is:

dS =
dω · (c− z)2

cosφ cos2 ψ
=

dA · (c− z)2 · cosψ
u2 cosφ

(2)

The solid angle dv can be defined as:

dv =
dS · cosφ
r2 + z2

=
dA · (c− z)2 · cosψ

u2(r2 + z2)
(3)

where (r, z) is the point on the mirror being imaged. Hence the
equation of the resolution of catadioptric sensor can be re-written
as:

dA

dv
=

u2(r2 + z2)

(c− z)2 · cosψ
=

[
(r2 + z2) cos2 ψ

(c− z)2

]
dA

dω
(4)

But, since:

cos2 ψ =
(c− z)2

(c− z)2 + r2
(5)

we have:
dA

dv
=

[
r2 + z2

(c− z)2 + r2

]
dA

dω
(6)

The resolution of the catadioptric camera is the multiplication of the
resolution of the conventional camera with the factor res which is
given by:

res =
r2 + z2

(c− z)2 + r2
(7)

Note that the factor in (7) is the square of the distance from the
point (r, z) to the effective viewpoint v divided by the square of
the distance from the point (r, z) to the pinhole p. Hence the spatial
resolution is highest around the periphery.

3.2 Spatial Resolution Factor

The spatial resolution factor is derived in (7). However, in the imple-
mentation phase, the expression needs to be represented in terms of
image point coordinates. The relation between mirror parameters,
image point coordinates and 3D outgoing ray are explicitly set up by

Fig. 2: Image formation in a catadioptric camera with a hyper-
boloidal mirror.

Onoe et al. in [22]. The study generates panoramic and perspective
images from omnidirectional video streams.

In this subsection, we aim to briefly explain the relation between
catadioptric image point coordinates and mirror parameters. As illus-
trated in Fig. 2, a ray coming from the world point P (X,Y, Z)
toward the focal point v of the hyperboloidal mirror is reflected by
the mirror and passes through the other focal point (camera cen-
ter) p, and the ray intersects an image plane at a point p(x, y). This
hyperboloidal projection yields the equations in [22] as:

γc = tan−1 u√
x2 + y2

(8)

γm = tan−1 (b2 + (c/2)2) sin γc − 2b(c/2)

(b2 − (c/2)2) cos γc
(9)

where (x, y) are the image point, and u is the focal length of camera
lens (the distance between the point p and the image plane).

On the other hand, Baker and Nayar [21] present the relation
between the mirror angle (γm) and the mirror points:

tan(−γm) =
z

r
tan(γc) =

c− z
r

(10)

By using the equations between (8-10), r and z can be re-written
as:

r =
c

tan(−γm) + tan(γc)
z = tan(−γm)r (11)

Therefore, we can obtain the parameters (r, z) in the spatial res-
olution factor equation (see (7)) by using the image coordinates
(x, y).

We simulated the image generated according to the coordi-
nate system of an omnidirectional image. The mirror parameters



(a) (b)

Fig. 3: (a) Spatial resolution map (The values are presented in
grayscale). (b) Resolution factors of the pixels at the corresponding
line in (a).

(a) (b) (c)

Fig. 4: (a) Front view of the simulated scene. (b) Omnidirectional
image. (c) Zoom on the checkerboard to better observe the resolution
difference.

are selected the same with NeoVision hyperbolic mirror (a =
28.095, b = 23.4125). Fig. 3a illustrates the change on the reso-
lution of the simulated omnidirectional image in grayscale format
where dark colors imply the lower spatial resolution values. This
illustration helps us to make an inference about the decrease of the
spatial resolution through the mirror center. The range of the reso-
lution values are plotted in Fig. 3b. The distance d shown in Fig. 4a
is equal for the upper and bottom part of the checkerboard. In this
demonstration, while preserving the distance to mirror on each point
of the object, we still observe distortion and change on the reso-
lution (Fig. 4b and c). For an image with size of (164× 164), the
resolution factors vary to values between 0.16 and 0.05.

3.3 Hyperspectral Unmixing

In remote sensing applications, the neighboring objects can be cap-
tured in a single pixel. Hyperspectral imaging makes it possible to
discriminate and identify the materials existing in the pixel, and their
corresponding mixing ratios. The pure spectral signature of a mate-
rial is called as endmember. The unmixing approach is an umbrella
term that encompasses the estimation of endmember spectra, esti-
mation of the number of endmembers and the estimation of their
abundances. The abundance of endmember determines the propor-
tion of the endmember in a pixel. The general definition of a linearly
mixed data is:

xij =
∑
k

eikckj + nij (12)

where i,j, and k correspond to band, pixel and endmember
indices, respectively. Additionally, x is the intensity value, e is the
spectrum, c is the mixing proportion, and n is random error. The
mixing proportions should sum to one.

Most of the unmixing approaches in the literature assume that
the hyperspectral data is spread in a convex structure, and they use
this assumption as a base for endmember extraction. However, this
assumption requires the number of the pure materials to be known
apriori. Therefore, the first step in unmixing algorithms is to estimate
the number of endmembers. Hyperspectral Signal Identification by
Minimum Error (HySime) developed by Bioucas-Dias & Nasci-
mento [23] is one of the well-known algorithms in the literature for
estimating the number of endmembers. We implemented HySime
for this purpose in our proposed algorithm. The method is an unsu-
pervised eigen-decomposition based approach. It selects the signal
subspace in the least squared error sense.

In spectral unmixing analysis, the following step is the extraction
of the endmembers’ spectral signatures. In the last step, the abun-
dance fractions are computed. Several least squared error based algo-
rithms are proposed in the literature for this purpose [24–27]. These
algorithms vary according to their constraints on abundance val-
ues (e.g., non-negativity and sum-to-one constraints). In this study,
we use a fast non-negativity constrained least squares algorithm
[28], and then we normalized the abundances so that sum-to-one
constraint is satisfied.

Bioucas Dias et al. [29] present a comprehensive review on hyper-
spectral unmixing. The study provides to clearly understand the
term and techniques of unmixing area. On the other hand, as deep
learning has recently attracted much attention in many domains, con-
volutional neural network architecture is used on pixel-based and
cube-based unmixing analysis by Zhang et al. [30].

3.3.1 Geometrical Unmixing Approaches: In the literature,
geometrical studies are mostly preferred due to their high perfor-
mance and low computational complexity. Well known algorithms
Pixel Purity Index (PPI)[31], N-FINDR[32], and Vertex Component
Analysis (VCA)[33] assume the existence of pure pixels for each
endmember.

N-FINDR [32] is based on the fact that in spectral dimension the
volume defined by a simplex formed by the purest pixels is larger
than any other volume defined by any other combination of pixels.
Therefore, all pixels are evaluated in the algorithm. This algorithm
finds the set of pixels defining the largest volume by inflating a sim-
plex inside the data. The number of iterations is equal to number of
pixels times number of endmembers (N × p).

The pixel purity index (PPI) [31] algorithm projects every spec-
tral vector onto skewers, defined as a large set of random vectors.
The points corresponding to extrema, for each skewer direction, are
stored. A cumulative account records the number of times each pixel
is found to be an extreme. The pixels with the highest scores are
the purest ones. The algorithm iterates as the number of skewers
(num_skewers).

The vertex component analysis (VCA) [33] algorithm is based
on the assumption that the endmembers are the vertices of a sim-
plex. The data is carried in this simplex of minimum volume. The
algorithm iteratively projects data onto a direction orthogonal to the
subspace spanned by the endmembers already determined. The new
endmember signature corresponds to the extreme point of the pro-
jection. The algorithm iterates until all endmembers are exhausted
(p).

The pseudo codes of the algorithms discussed above are given in
Appendix section.

3.3.2 Spatial-Contextual Unmixing Approaches: Another
approach in unmixing literature is the incorporation of spatial infor-
mation into the spectral unmixing. As it is discussed in [29],
the geometrical, statistical and sparsity-based approaches work on
spectral domain, and ignore the valuable information in spatial
domain. Researchers are motivated to classify hyperspectral images
by exploiting the correlation between both spatial and spectral neigh-
bors. The idea in this approach is to utilize the spatial information
in addition to the spectral unmixing algorithms at the expense of
additional computational cost.

In the proposed catadioptric hyperspectral imaging system, we
aim to utilize the difference in spatial resolution between the center
and outer parts of the mirror and furthermore to account for the dis-
tortion in the mirror. As the spatial resolution decreases toward the
image center, the possibility of detecting pure pixels in the regions
toward the image periphery increases. Therefore, the spatial-spectral
unmixing approaches are employed in this section. Xu et al. [34] and
Yan et al. [35] fuse spatial and spectral information in a sub-pixel
level. Region-based spatial preprocessing (RBSPP) [36], Spatial Pre-
processing for Endmember Extraction (SPP) [37], and Automated
Morphological Endmember Extraction (AMEE) [38] are well known
spatial-contextual unmixing algorithms. The studies [34, 35] per-
form a sub-pixel spectral mixture analysis. AMEE and SPP are
pixel-based unmixing approaches, and RBSPP and SSPP are region-
based approaches. In the proposed system, the endmembers are



Fig. 5: A general flowchart of the proposed algorithm.

extracted from the individual regions which are partitioned accord-
ing to their spatial resolutions. Therefore, region-based unmixing
approaches are more related with the proposed study. Martin & Plaza
proposed an improved version of RBSSP in SSPP [39]. Hence, the
proposed algorithm is only compared with RBSPP and SSPP based
on the experimental results presented in their study.

Region-based spatial preprocessing (RBSPP) [36] uses spatial
information as a guide to exploit spectral information more effec-
tively by adequately exploiting spatial context in adaptive fashion.
This approach first adaptively searches for the most spectrally pure
regions. Then the method performs unsupervised clustering using
the ISODATA [40] algorithm, and finally applies the orthogonal
subspace projection algorithm to the mean spectra of the resulting
regions in order to find a set of spatially representative regions with
associated spectra which are both spectrally pure and orthogonal
between them.

Spatial-Spectral preprocessing (SSPP) [39] considers spatial
and spectral information simultaneously and fuses both sources of
information at the preprocessing level. First, a spatial homogeneity
index is computed by using the difference between the original and
spatially filtered image. Second, a principal components transforma-
tion is performed. A spectral purity index is defined according to the
distances of the pixels to the maxima and minima of the projection.
SSPP algorithm depends on two thresholds. Threshold ρ ∈ [0, 100]
controls the pixels selected based on spatial homogeneity. Thresh-
old β ∈ [0, 100] controls the pixels selected based on spectral purity.
In parallel to the first two steps, an unsupervised spectral clustering
algorithm (ISODATA [40]) is performed. The rest of the algorithm is
region-based. The regions with high spectral purity and high spatial
homogeneity are selected. The endmember selection process is only
performed on these selected regions. Therefore, the processing time
of the endmember estimation process significantly decreases.

4 METHODOLOGY

Spectral signature mixing is a commonly faced problem caused by
low spatial resolution in hyperspectral imagery. It becomes a more
challenging problem in omnidirectional images. Objects are repre-
sented with fewer number of pixels towards the mirror center due
to the mirror shape. This reduction in the spatial resolution causes
mixed pixels to be located around the mirror center. In this study,
we propose the application of approaches which take into consider-
ation the locations of the pixels on the mirror. A general flowchart
of the algorithm is given in Fig. 5. The algorithm starts with estimat-
ing the pure pixels and their abundance values. Since distinguishing
the unique materials in a scene is nontrivial, obtaining a groundtruth
for the endmember estimation is problematic. Instead, the data is
reversely generated by using the estimated pure pixels and abun-
dances. The difference between the original and the regenerated data
indicates the validity of the proposed algorithm. The validity of all
unmixing steps are examined together.

4.1 The Proposed Improvement on Geometrical Unmixing
Approach (Omni-Approach)

The method that we propose is similar to the conventional spatial-
spectral preprocessing unmixing approaches. However, unlike these
methods, it does not require spatial connectivity. It aims to overcome
the inequality of spatial resolution that occurs in the omnidirectional
hyperspectral image. Since the spatial resolution factor is directly
related with the mixing of the scene, we rate the pixels according to
their spatial resolution factors. In the proposed preprocessing step,
the spatial resolution map is generated by using the camera and
mirror parameters (explained in Section 3.2). In this respect, the pre-
processing step proposed in this study is independent from the scene
content. Then, the map is integrated with the endmember estimation
algorithm to be applied. The complexity of the proposed approach
is O(n) where n is row × column of the omnidirectional image.
Therefore, the effect on the endmember estimation algorithm is neg-
ligible in terms of processing time. This provides a great advantage
compared to the other spatial-spectral unmixing methods.

The methods that are evaluated in this study are geometry based
approaches and they aim to extract the endmember signatures by
maximizing the volume. Under the assumption that the endmembers
must be located at the extrema, we propose to multiply the data by
the spatial resolution map just before detecting the maxima of the
volume. Thus, the point having high spatial resolution is translated
to outer of the simplex. The possibility of detecting a point having
higher spatial resolution as an extreme point is increased in this way.
Conversely, the pixel with lower resolution is forced to translate to
inner position in the data cloud. The maxima of the algorithms are
evaluated in the Line #6 of PPI, Line #10 in N-FINDR (Appendix
section), and Line #19 in VCA [33].

4.2 The Proposed Local Endmember Extraction Approach
on Omnidirectional Images

The materials present in the scene may have diversity on their spec-
tral characteristics, even though they are pure pixels conceptually.
Different environmental and illumination conditions such as shadow
of an object and heterogeneous content of the material cause a
variety on the pure spectral signatures of the material. A single rep-
resenter for each class for the complex unmixing problem may not
be found. For these reasons, some researchers prefer to conduct their
unmixing studies on local endmember estimation approach [41, 42].
This approach investigates the spectral unmixing algorithms in a
small size window independently from the rest of the scene. Somers
et al. [41] introduced a similar algorithm. They select subsets from
the hyperspectral data cube. The extracted endmembers from the
subsets are stored in a global endmembers set, and then clustered
in order to obtain the global representers of the pure materials. This
algorithm is also used in [42], which aims to monitor seasonal vari-
ations of vegetation cover. They estimate the abundances of the
endmembers with a different viewpoint. The data cube is evaluated
using the global endmembers set, then the abundances of the end-
members belonging to the same cluster are accumulated for each
pixel. As a conclusion, they indicate that the local unmixing idea
benefits to discriminate two similar vegetation species.

In our study, we propose that spectral analysis of partitioned cir-
cles which are generated according to their spatial resolution factors,
is more appropriate for omnidirectional hyperspectral images. The
materials with different spatial resolutions may have a diversity on
their spectral signatures. Local unmixing approach prevents to miss
these cases. The scheme of the proposed algorithm is depicted in
Fig. 6. The image is divided into three circles with equal number of
pixels. The estimation of the number of endmembers and estimation
of spectral signatures of endmembers (EEA) are studied indepen-
dently on each circle. The first column depicts the estimated pure
pixel locations with red dots on the image, their corresponding spec-
tra are plotted in the following column. After endmember estimation,
a bundle of endmembers is accumulated. The studies presented in
[41, 42] take advantage of high number of endmembers by using
Multiple Endmember Spectral Mixture Analysis (MESMA) [43].



Fig. 6: The scheme of the proposed local endmember extraction
algorithm.

The algorithm is based on using a library which contains field and
laboratory measurements. An enhanced performance of MESMA
is presented at [44]. A wide range of instances according to the
application is collected. In spectral mixture analysis, it achieves to
discriminate similar spectra [43]. In the proposed algorithm, we do
not use such a library. Instead, we use the internal information of
the hyperspectral data as it is proposed in [41]. A library is created
by collecting the results of endmember estimation of each circular
sub-region. The collected endmembers set is clustered by k-means
[45], and an optimal abundance map is computed by using multi-
ple endmember spectral mixture analysis. The last column consists
the clustered endmembers and the error maps where white color
indicates higher error. The definition of error map is presented in
Section 5.3. Note that, the proposed method is combined with the
improvement explained in Section 4.1. The pixels in the circular sub-
regions are multiplied with their corresponding spatial resolution
factor.

As a conclusion of this section, the first method is proposed
for geometrical unmixing approaches. Most of the geometrical
approaches in the literature assume that the hyperspectral data is
spread in a convex structure. As each pixel in a catadioptric image
has different spatial resolution factor, the mixing ratio of the pixels
depend on their spatial resolution. The pixel with higher spatial res-
olution is more likely to contain a pure spectral signature, in other
words less mixed signature. We propose to rate the pixels in the
convex structure according to their spatial resolution factors. The
second method proposed in this study is a local spectral mixing anal-
ysis approach. The local unmixing algorithms spatially divide the
hyperspectral scene rather than inspecting the whole scene at once.
This point of view in unmixing problem produces more robust and
accurate results.

5 EXPERIMENTAL RESULTS

In this section, the well-known geometrical unmixing approaches
and the proposed improvements on geometrical and spatial-
contextual unmixing approaches are evaluated. The validity of pure
pixels extracted by the proposed method are ensured by regener-
ating data. The abundance map of the data is computed by the
extracted pure pixels. The data is regenerated by multiplying the esti-
mated pure pixels and the abundance map (see (12)). The difference
between regenerated and original data indicates the regeneration
error (see 13). The accuracies of the algorithms are compared to each
other using regeneration error.

5.1 Data Definition

The proposed study is a pioneer on integrating hyperspectral imaging
devices and catadioptric mirrors. According to our limited knowl-
edge, there is not any public dataset to evaluate the proposed method.
Therefore, we have performed some acquisitions. In the experi-
ments, seventeen images are evaluated. While the first eleven of
them are real world acquisitions, the last six images are synthetically
generated catadioptric hyperspectral images.

5.1.1 Real World Acquisitions: The proposed method is tested
on scenes that have been acquired by Headwall A-Series Visible +
NIR linescan camera with spectral range of 400 nm - 1100 nm and
1.5 nm spectral resolution. The spectral range of the catadioptric
system is the same with the range of the camera which views the mir-
ror. Additionally, we used the hyperbolic mirror of NeoVision. We
performed outdoor acquisitions in all experiments of our study. We
have acquired three real world datasets which contain totally eleven
images. The images in a dataset include same objects in a variety of
positions and illumination conditions. All datasets contain building,
sky, and forest in some scenes. Additionally, white reflector (teflon)
and black reflector is used for reflectance conversion.

• Dataset #1: In the first acquisition, several objects made of
clay and mosaic are captured in addition to the materials
discussed above. Experiments #1 and #2 belong to Dataset #1.

• Dataset #2: The scene is composed of the materials with
distinctive spectral characteristics in VNIR region. Bone, veg-
etation and soil residues can exist together in archaeological
remote sensing and food inspection problems. Experiments
#3, #4 and #7 to #11 belong to Dataset #2.

• Dataset #3: The scene contains printed papers with six dif-
ferent colors on different geometrical shapes. The shapes are
painted by using red, green, blue, magenta, cyan and yellow
colors. The first print covers six color stripes which lie from
outer regions to the center of the image. Two of the prints
are painted by red, green and blue, and the squares’ size are
1cm2 and 2cm2. The last paper is designed contrary to the
premise of the proposed algorithm. The paper is divided into
three parts from outer to the center of the image. Each part
contains different two colored squares. The colors which exist
in the inner part, do not exist in the outer part. Experiments #5
and #6 belong to Dataset #3.

The sample RGB representations of the datasets and the materials
that exist in the scene are given in Table 1.

5.1.2 Synthetic Data: We have simulated a four-wall indoor
scene. Each wall is composed of a signature gathered from the Indian
Pines dataset [46]. The generation of synthetic data is similar to that
in [47]. The walls have a pattern of squares with two pixel width
where the consecutive squares have different spectral characteristics.
Totally 11 different spectral signatures are used in a simulated image.
Fig. 7a demonstrates the RGB representation of the synthetic data.
After assigning the pure spectral signatures to the regions, an aver-
aging low-pass filter is applied in order to spectrally mix the data.
Fig. 7b is the mixing map of the scene, the map demonstrates the
mixing ratios of each pixel. The highly mixed pixels get higher val-
ues in the map. The ratio is computed by multiplying the abundances
of a pixel.

The synthetic data is categorized into four parts:
• No noise, pure spectral signature (Experiment #12)
• Noisy, pure spectral signature (Experiments #13 and #14)
• Noisy, spectrally mixed (Experiments #15 and #16)
• No noise, spectrally mixed (Experiment #17)

5.2 Limitations

The hyperspectral sensor requires a stable light source in order to
obtain an accurate measurement for indoor acquisitions. For omni-
directional imaging, multiple illuminators must be integrated for
the diffuse illumination of the environment to be captured. We



Table 1 DETAILS OF THE REAL WORLD ACQUISITIONS

RGB images Materials existing in the
scene
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#1

•B&W checkerboard
•Teflon (white reflector)
•Several objects (clay)
•Mosaic
•Building
•Camera holder aluminium
•Sky
•Forest

D
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et

#2

•B&W checkerboard
•Teflon (white reflector)
•Black reflector
•Bone
•Leaf
•Soil
•Building
•Camera holder aluminium
•Sky

D
at

as
et

#3

•6 color prints
•Teflon (white reflector)
•Building
•Camera holder aluminium
•Sky

(a) (b)

Fig. 7: (a) Synthetic omnidirectional hyperspectral data. (b) A
sample mixing map.

performed only outdoor acquisitions because of the insufficient
illumination equipment.

5.3 Comparison of Unmixing Algorithms and Preprocessing
Approaches

In this subsection, we compare the effect of the spatial-contextual
preprocessing approaches on the geometrical unmixing algorithms
in terms of regeneration error. The methods are compared on the
error of regenerated data which is created by using the extracted
endmembers. The error values are multiplied by 100 for display
purposes. The regeneration error is computed by root mean squared
error as in:

error =

√∑N
i=1(S(i, :)2 − X(i, :)2)

N
(13)

where S is original hyperspectral data, X is measured hyperspectral
data, and N is total number of pixels.

In Table 3, the first super-column (containing three columns)
shows the results of the geometrical unmixing algorithms with-
out any spatial-spectral preprocessing. The following three super-
columns contain the results of the spatial-spectral preprocessing
approaches (RBSPP, SSPP and Omni-Approach) applied before
the regarding geometrical unmixing approaches. The experiments
whose results are shared in Table 3, the data ID between 1 and 11 are
the real world acquisitions, and the rest correspond to the simulated
omnidirectional hyperspectral data. The SNR of the data are given
in Table 2. The last row of the Table 3 indicates the overall accumu-
lated error values of the experiments. This overall results provide us
to make a comprehensive comparison of the geometrical and spatial-
contextual unmixing approaches. The proposed method is also com-
pared with two other spatial-contextual methods: AMEE and SPP.
However they were not included in Table 3, since their regeneration
errors are higher than that of RBSPP and SSPP. The lowest overall
error is obtained when N-FINDR algorithm is applied with Omni-
Approach. Additionally, Omni-Approach achieves to decrease the
overall error of VCA. SSPP algorithm depends on two thresholds:
ρ and β. The results of SSPP demonstrated in Table 3 are obtained
by using the default ρ and β values provided in Matlab implemen-
tation, where ρ = 50, β = 30. The effect of the thresholds on SSPP
approach is investigated in Fig. 8. All combinations of the ρ and β
parameters for the values 30, 50, and 70 are evaluated as it is sug-
gested in the related study [39]. The lowest error of SSPP+NFINDR
is obtained when ρ = 50, β = 70. The lowest error of SSPP+PPI is
obtained when ρ = 70, β = 70. The lowest error of SSPP+VCA is
obtained when ρ = 70, β = 50. On the other hand, the endmember
estimation accuracy of SSPP approach highly depends on the esti-
mated number of endmembers. The SNR modification discussed in
Section 3.3 negatively affects the spatial segmentation step. SSPP
uses the output of an external method: ISODATA method of ENVI
software. The performance of SSPP approach also depends on the
clustering performance of ISODATA. In this case, SSPP remains
incapable of decreasing the regeneration error of the geometrical
unmixing algorithms.

5.4 Evaluation of the Proposed Improvement on
Geometrical Approaches

In this subsection, we aim to observe the effect of the proposed
improvement explained in Section 4.1 on the existing geometrical
unmixing algorithms. Table 4 and Table 5 represent the case which
satisfies the situation that the proposed improvement is based on.
The first column in the table shows the RGB representations of the
scenes. The upper row contains the error maps created by VCA and
OmniVCA algorithms. Bright tones indicate higher error, dark tones
indicate lower error. The second row shows the estimated pure pixel
locations on the RGB images of the data. The last row indicates the
regeneration errors of the N-FINDR, PPI, and VCA algorithms with
and without omnidirectional approach.

5.5 Evaluation of the Proposed Local Endmember
Extraction Approach

In this subsection, we evaluate the endmember estimation perfor-
mance of the algorithm proposed in Section 4.2. Fig. 10 demon-
strates the comparison of the number of endmembers estimated from
individual circles vs. whole image. Circle 1 is the outer, and the cir-
cle 3 is the inner one. In the experiments between #12 and #17, 11
different spectral signatures are used. The number of endmembers
are estimated highly correlated with the groundtruth in the Exp. #12,
#13 and #17. In the Exp. #14, #15, and #16, the noise is increased,
and the data is manually mixed. Consequently, estimation accuracy
is decreased in these experiments. In most of the experiments, the
estimated number of endmembers are similar to each other between
circles. However, in Exp. #3, #4, and #5, the estimated number of
endmembers are explicitly increased in inner circles. The extracted
endmember locations are demonstrated in Fig. 11, Fig. 12, Fig. 13.
As it can be analyzed in the RGB representations, there is no signif-
icant material diversity difference between inner and outer circles.



Table 2 SNR VALUES AND THE DATASETS BELONGING TO THE EXPERIMENTS (LOW SNR VALUE INDICATES HIGH NOISE, SIM: SIMULATED DATA)

Exp.# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Dataset# 1 1 2 2 3 3 2 2 2 2 2 sim. sim. sim. sim. sim. sim.

SNR 31 30 34 26 29 26 28 32 32 26 34 no noise 50 30 50 30 no noise

Table 3 REGENERATION ERROR BASED COMPARISON OF GEOMETRICAL UNMIXING ALGORITHMS WITH AND WITHOUT PREPROCESSING
APPROACHES (OE: Overall Error)

Exp.#
Geometrical Approaches Spatial-Spectral Approaches

No preprocessing RBSPP SSPP Omni-Approach

NFINDR PPI VCA NFINDR PPI VCA NFINDR PPI VCA NFINDR PPI VCA

1 1.97 3.85 1.81 9.16 2.75 2.70 1.94 4.40 2.40 1.72 5.74 1.86

2 2.26 7.27 2.92 1.79 37.9 1.72 2.43 7.01 4.94 2.12 8.12 2.92

3 1.35 4.76 2.49 2.89 26.3 1.33 1.46 2.67 2.00 2.13 2.39 1.75

4 1.05 2.57 1.04 1.03 1.61 1.06 1.05 2.16 0.94 1.05 2.87 0.97

5 2.68 9.43 2.71 5.90 27.3 5.94 5.19 19.35 3.14 2.51 12.38 2.78

6 2.47 9.33 2.42 2.73 6.21 2.69 11.90 10.23 2.51 2.56 9.43 2.63

7 3.85 5.21 1.62 1.50 6.22 1.51 5.13 4.46 1.91 1.90 5.21 1.76

8 1.52 4.19 1.46 3.08 20.2 2.97 1.49 4.15 1.43 1.50 3.92 1.61

9 1.71 3.54 1.60 3.01 19.5 3.01 1.60 4.00 1.46 1.43 3.76 1.55

10 1.36 3.25 1.57 1.25 1.23 1.15 1.37 2.35 1.33 1.42 2.41 1.57

11 1.50 6.84 2.69 2.06 49.1 1.84 1.57 6.06 2.38 1.39 6.37 2.69

12 0.03 21.76 0.00 3.99 33.53 3.99 0.03 23.31 0.00 0.03 21.76 0.00

13 0.09 8.17 1.67 1.14 25.08 1.16 0.10 8.52 0.70 0.07 7.21 1.69

14 0.87 9.53 0.57 2.20 1.99 2.13 0.86 10.12 0.57 0.68 9.08 0.57

15 0.15 7.77 1.69 3.36 29.93 3.36 0.15 7.86 1.19 0.14 7.02 1.68

16 0.99 8.89 0.68 3.51 31.25 3.50 1.00 10.44 0.68 0.80 9.05 0.68

17 0.09 18.87 0.08 3.68 32.76 3.68 0.12 25.82 0.11 0.09 18.87 0.07

OE 23.94 135.22 27.02 52.27 352.87 43.74 37.39 152.88 27.70 21.53 135.58 26.78

Fig. 8: Effect of SSPP thresholds on regeneration error.

The reliability of Hysime is highly dependent on SNR estimation
accuracy. In the provided Matlab code by the authors, the signal to
noise ratio (SNR) is assigned 50 as default. However, it fails in some
cases and the algorithm grossly over-estimates the number of end-
members as in Fig. 9. The high number of estimated endmembers
provides regenerating the data with lower error. In other respects,
the difference between the numbers of endmembers of circles is not
reasonable. Therefore, we modified the implementation of the SNR
prediction as given in (14).

SNR ≡ 10log10
x2

σ2
≡ 10log10

E[sT s]
E[nT n]

(14)

where s and n are vectors standing for signal and additive noise,
respectively.

As a reminder, the errors are measured per pixel. In other words,
the total error of the data is normalized by the total number of pixels.
Therefore, the error is independent of the circle size. The proposed
improvements are compared in Table 6. The first column shows the
regeneration error without using a spatial information. The follow-
ing column contains the results which obtained by using only the
OmniVCA approach. Fig. 15 and Table 6 show that the simulated
images produce lower errors due to their comparatively higher SNR
values. The last column presents the results of the algorithm where
the OmniVCA and local EEA algorithms are used together. The
significant contribution is obtained in the local EEA and multiple
endmember selection approach. The overall error in this column
decreases 45% compared to the VCA approach with no spatial
information.

The experimental results shared in Table 6 correspond to the
results of the evaluation of three circles. The performance of the
local EEA approach is evaluated for two, three, nine, and eighteen
circular divisions and sub-regions. Therefore, we measure the rela-
tion between the subset size and performance of the algorithm. The
schemes of the divisions are demonstrated in Fig. 14. The chart in
Fig. 15 compares the subset sizes on reconstruction error. [41] pro-
poses to set the subset size as 10% of the image size. However, in
this study, we obtain lowest error by using three circles, in other



Table 4 THE EVALUATION OF THE PROPOSED GEOMETRICAL UNMIXING IMPROVEMENT ON EXP. #3

RGB Representation Error Map of VCA Error Map of OmniVCA

Pure Pixel Locations of VCA Pure Pixel Locations of OmniVCA

Error of Original Algorithms Error of Omni Approach

NFINDR PPI VCA NFINDR PPI VCA

1.35 4.76 2.49 2.13 2.39 1.75

Table 5 THE EVALUATION OF THE PROPOSED GEOMETRICAL UNMIXING IMPROVEMENT ON EXP. #4

RGB Representation Error Map of VCA Error Map of OmniVCA

Pure Pixel Locations of VCA Pure Pixel Locations of OmniVCA

Error of Original Algorithms Error of Omni Approach

NFINDR PPI VCA NFINDR PPI VCA

1.50 2.25 1.44 1.46 2.19 1.30



Table 6 REGENERATION ERROR BASED PERFORMANCE EVALUATION OF THE PROPOSED IMPROVEMENTS (OE: Overall Error)

Exp.#
VCA VCA VCA

no preprocessing Omni-Approach Omni-Approach & Local EEA

1 1.81 1.86 1.20

2 2.92 2.92 1.94

3 2.49 1.75 1.05

4 1.04 0.97 0.57

5 2.71 2.78 1.47

6 2.42 2.63 1.62

7 1.62 1.76 0.41

8 1.46 1.61 0.87

9 1.60 1.55 0.82

10 1.57 1.57 0.68

11 2.69 2.69 1.39

12 0.00 0.00 0.00

13 1.67 1.69 0.09

14 0.57 0.57 0.56

15 1.69 1.68 0.49

16 0.68 0.68 0.69

17 0.08 0.07 0.00

OE 27.02 26.78 14.00

Fig. 9: Over-estimated number of endmembers.

Fig. 10: Estimated number of endmembers on each circular divi-
sion.

Fig. 11: Extracted endmembers on each circle of Exp. #3.

Fig. 12: Extracted endmembers on each circle of Exp. #4.

Fig. 13: Extracted endmembers on each circle of Exp. #5.

words, 33% of the image size. The image is partitioned into tori hav-
ing equal number of pixels. In this case, the inner circle has largest
radius, and the outer circle has smallest radius. In most of the scenes,
the inner circles capture the highly saturated area e.g., sky and alu-
minum camera holder. HySime mostly fails in estimation of number
of endmembers in these scenes. Therefore, we continue the studies
by keeping equal the number of pixels rather than minor radii. As
the region size decreases, the algorithm for estimation of number of
endmembers (HySime) underperforms. The output of the HySime
algorithm directly effects the extracted endmember spectra and the
regeneration performance.



(a) (b) (c) (d)

Fig. 14: Division Schema. (a) 2 sub-regions. (b) 3 sub-regions. (c)
9 sub-regions. (d) 18 sub-regions.

Fig. 15: Reconstruction errors of the division schema given in Fig.
14.

Fig. 16: Reconstruction errors for each vertical division (VD).

In this section, the relation between scene content and position
of the divider line is also investigated for the vertical divisions. In
this experiment, the schema with nine sub-regions are investigated.
In each scheme type, the vertical divider line is rotated 60 degrees
clockwise five times. Fig. 16 presents the reconstruction error plot
for the demonstrated rotation schemes. The errors of most of the
experiments are similar for different vertical division except Exp.
#2 and Exp. #11. There is a considerable difference between VD2
and VD3 of Exp. #2, and VD3 and VD5 of Exp. #11. Therefore, the
error maps of these experiments are examined in Fig. 17 and Fig. 18.
The rotation of the divider line changes the content of sub-regions.
Therefore, the estimated SNR, number of materials and spectral
signatures exist in the sub-region are effected by the rotation. Fur-
thermore, these factors effect all steps of the linear unmixing, and
consequently, the reconstruction error is changed. This investigation
shows that the location of the divider in vertical division may be
crucial for some scenes.

To conclude this section, the proposed improvement on geomet-
rical unmixing approaches (Omni-Approach) specific to the omnidi-
rectional hyperspectral imaging system, succeeded in increasing the
estimation accuracy of the state-of-the-art VCA method on most of
the experiments. However, scenes which contain different materials
on the inner and the outer parts of the mirror limit the potential of
the method.

The proposed local EEA method is also developed according to
the structure of the omnidirectional hyperspectral imaging system.

(a) (b) (c)

Fig. 17: (a) RGB representation of Exp.#2. (b) Error map of VD2.
RMSE: 1.78. (c) Error map of VD3. RMSE: 2.11.

(a) (b) (c)

Fig. 18: (a) RGB representation of Exp.#11. (b) Error map of VD3.
RMSE: 1.38. (c) Error map of VD5. RMSE: 1.69.

These two improvements are applied concurrently on hyperspectral
data. We conclude that the spectral analysis of omnidirectional data
achieves fewer error on spatially divided parts rather than imple-
menting on whole image. The endmembers and their abundances are
properly estimated by using circular divisions.

6 CONCLUSION

The hyperspectral cameras used in remote sensing applications often
need large field of view (FOV). Recent applications capture large
FOV hyperspectral data by using airborne, satellite and UAV sys-
tems. In this study, we aimed to increase the FOV of traditional
hyperspectral imaging systems. The limitations of existing systems,
weather conditions, flight permissions, no fly zones, costly aircraft
hire, and carrying capacity of UAVs, are alleviated in low cost and
easy-to-use manner. We proposed using line scan cameras on cata-
dioptric systems. To our knowledge, this is the first time that a
single hyperspectral camera and a single catadioptric mirror is used
together to capture an omnidirectional hyperspectral image.

We analyzed the proposed system in the context of spectral
unmixing which is one of the most challenging problems of
hyperspectral imaging. We identified the critical issues on spectral
unmixing that must be taken into consideration specifically for the
proposed system.

As the region closer to the center of the mirror has lower spatial
resolution, we introduced a weighting scheme to favor pure pix-
els in the outer part of the mirror. Additionally, the local unmixing
approach related to hyperspectral image analysis was adapted specif-
ically to the proposed imaging system, and we developed a new
spatially local unmixing approach. The novel approach decreases
the regeneration error of the conventional geometrical and spatial-
contextual unmixing algorithms on estimating the endmembers and
their abundances.

As future work, we suggest an intelligent endmember selec-
tion process in the multiple endmember spectral mixture analysis
e.g., incorporating spectral similarity of the spatially neighbor-
ing pixels, developing an effective clustering method by using the
variances. Additionally, regional division step of local unmixing
approach can be performed adaptively based on uniform spectral
properties of regions instead of equal sized ones. Furthermore, non-
linear unmixing analysis can be investigated for catadioptric image
formation.

The proposed system covers many application areas belonging to
the omnidirectional and hyperspectral imaging. The study may pro-
duce a practical solution for the problems which requires wide field



of view including gas emission detection, road traffic monitoring,
biomedical imaging and surveillance.

7 Pseudo Codes of the Geometrical Unmixing
Algorithms

Algorithm 1 Pixel Purity Index (PPI) Algorithm
Input p, R≡ [r1, r2, . . . , rN ], num_skewers {num_skewers is the
number of skewer vectors to project data onto.}
Output M { L× p estimated matrix}

1: skewers := randn(L,num_skewers);{normally distributed L×
num_skewers samples}

2: votes := zeros(N,1);
3: for i := 1 to num_skewers do
4: vol_aux := skewers:,iR0; {R0 is the zero-mean of R}
5: vol_aux := abs(vol_aux);
6: [max_vol,idx] := max(vol_aux); { idx is the indice of the data

extreme }
7: [votes]idx := [votes]idx + 1;
8: end for
9: [val_aux,indice] := sort(votes); { sortes votes in descending

order}
10: indice := [indice]1 : p;
11: M := [R0]:,indice;

Algorithm 2 N-FINDR
Input p, R≡ [r1, r2, . . . , rN ]
Output M { L× p estimated matrix}

1: Rp := UT
p R0;{Up obtained by SVD, and R0 is the zero-mean

of R}
2: indice := randi(N,p);{ indice is the randomly selected p points

from N samples}
3: Raux := [Rp]:,indice;
4: max_vol := det(Raux);
5: for i := 1 to N do
6: r := [Rp]:,i;
7: for j := 1 to p do
8: [Raux]:,j := r; { temporarily updates the jth endmember}
9: vol_aux := det(Raux);

10: if vol_aux > max_vol then
11: max_vol := vol_aux;
12: indicej := i;
13: end if
14: end for
15: end for
16: M := Up[Rp]:,indice;

The reader is kindly redirected to [33] for the pseudo code of
Vertex Component Analysis approach.
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