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Department of Computer Engineering, Izmir University of Economics

Asst. Prof. Dr. Mustafa ÖZUYSAL
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ABSTRACT

ELIMINATION OF USELESS IMAGES FROM RAW CAMERA-TRAP DATA

A common way to observe animals in nature is to use motion triggered cam-

eras that are called camera-traps. With the expanding usage of camera-trap due to ad-

vances in digital technology, the number of images that are collected from camera-traps

has increased significantly. Labeling and grouping of animals in these images have put

enormous workload on wild-life researchers. We propose a system that frees time for

researchers by eliminating useless images-too bright, too dark, blurry images and images

that contain no animals- from raw camera-trap data. Firstly, we utilise image histograms

to eliminate too bright and too dark images and Fast Fourier Transform to eliminate blur

ones. Secondly we make use of deep learning techniques and background subtraction to

eliminate images without animals and we present the result of our experiments on these

subjects. Our approach on eliminating too bright and too dark images have missed very

few images and on eliminating blur images we achieve 95.5% success. Finally we show

that the technique we propose eliminates more than 50% of images without animals while

containing 99% of images with animals.
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ÖZET

HAM FOTOKAPAN VERİSİNDEN İŞE YARAMAZ İMGELERİN ELENMESİ

Doğadaki hayvanları gözlemlemenin en yaygın yollarından birisi fotokapan adlı

hareket sensörlü kameralar kullanmaktır. Dijital teknoloji alanındaki gelişmelerle fo-

tokapan kullanımının genişlemesi, fotokapanlardan toplanılan imge sayısında büyük bir

artışa yol açmıştır. Bu imgeleri etiketleme ve gruplama görevleri, doğa araştırmacılarının

üzerine büyük bir iş yükü bindirmiştir. Bu çalışmamızda aşırı karanlık, aşırı aydınlık,

bulanık ve hayvan içermeyen imgeleri eleyerek araştırmacılar için zaman kazandıran

bir sistem öneriyoruz. İlk olarak imge histogramlarından aşırı parlak ve aşırı karanlık

imgeleri elemek için, Fast Fourier Transform’dan ise bulanık imgeleri elemek üzere fay-

dalanıyoruz. İkincil olarak hayvan içermeyen imgeleri elemek için derin öğrenme ve arka-

plan çıkarımı tabanlı bir yöntem kullanıyoruz ve bu konular üzerindeki deneylerimizin

sonuçlarını sunuyoruz. Aşırı parlak ve aşırı karanlık imge eleme yaklaşımımız neredeyse

hatasız çalışırken, bulanık imge eleme yaklaşımımız %95.5’lik bir başarı yakalamıştır.

Son olarak kullandığımız tekniğin hayvan içermeyen imgelerin %50’sini elerken, hayvan

içeren imgelerin %99’unu koruduğunu gösteriyoruz.
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CHAPTER 1

INTRODUCTION

Camera-traps are motion-sensored cameras that are set up on the pathways of

animals to observe animals in wild-life. Examples on images that are captured from

cameratraps are given in Fig.1.1. In recent years, cameratrap usage has been increasing

continuously. A properly working camera-trap can capture nearly 1000 image in a month.

Due to unexpected conditions(animals damaging the camera, heavy rainfall or storms) or

cameras not working properly, a considerable amount of these images may be too dark,

too bright or blur. Also the undistorted images may contain no animals. Since the aim of

wild-life researchers is to examine these images and group or label them according to the

species, above mentioned images can be considered useless. Images collected from high

number of camera-traps takes too much time for researchers to examine and make use of.

Figure 1.1. Examples of images obtained from camera-traps.
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1.1. Thesis’ Aim and Objectives

The purpose of our study is to automatically exclude useless images from raw

datasets of camera-traps and hence decrease the number of images to be visually checked.

In our method, we firstly eliminate blur, too bright and too dark images. To eliminate blur

images, we utilize a method based on Fast Fourier Transform and to eliminate too bright

and too dark images, we employ image histograms. After the elimination of these images,

the goal is to eliminate images without animals. (Fig. 1.2).

Figure 1.2. Pipeline of elimination process on raw camera-trap dataset.

For this purpose we evaluate two methods on animal detection in camera-trap im-

ages, first one is based on background subtraction (since the camera-traps accumulate

images with varying time periods on the same background) and the second one uses con-

volutional neural networks (CNN). We further investigated how to combine these two

approaches to obtain the best outcomes.

1.2. Organization of Thesis

In Chapter 2, we review the related work in literature and explain our contribution

in detail. We present our methods of eliminating blurred, too bright and too dark images

in Chapter 3. Chapter 4 is devoted to describe the methods of object detection in order to

eliminate images without animals. We present experimental results in Chapter 5. Lastly,

our conclusions are given in Chapter 6.
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CHAPTER 2

RELATED WORKS

Studies on automatic animal detection and classification of images/videos that are

gathered from nature are relatively new. In the work of Boom et al. (2014), a dataset was

built with images collected from sub-aqua cameras and a large set of features including

color, shape, texture properties and moment invariants are used. Fish classification was

performed on the regions obtained by separating moving objects from the background.

Other studies on distinguishing species includes the work of Dunn et al. (2003) where

animals that are to display are photographed with a blue cloth in the background and

the study of Hernández-Serna and Jiménez-Segura (2014) where the photographs from a

museum database are used, therefore animals are easily distinguished from background.

Song and Xu (2010) conducted one of the studies to decrease the workload of

wild-life researchers. In this work, birds are detected on a video and tracked with a

Kalman Filter. Standard Kalman Filter is adapted in a way that considers the constraints

related to birds speed or where the bird may be in an image for better tracking of birds.

This way authors aim to show only the videos with a high probability of containing birds

to the experts that will examine the video. With a similar purpose, Weinstein (2015)

detects moving objects in videos captured in nature, and show the experts only the frames

that contains any moving objects.

The first study to use convolutional neural networks(CNN) to classify species from

camera-trap images was conducted by Chen et al. (2014). They use the dataset of the Uni-

versity of Missouri that contains 20 species. Although CNN carries much more potential

on this task, they achieve a disappointing 38% accuracy because this study took place

in 2014(early years of CNN’s). Villa et al. (2017) tested different CNN structures with

a much bigger dataset (Snapshot Serengeti, 26 species, 780.000 images) reported an ac-

curacy of 60%. Norouzzadeh et al. (2018) made another study on Snapshot Serengeti

dataset, training the CNN models from scratch. This increased classification accuracy up

to 94% with the best model when the consideration is the highest probability class(top-1

accuracy). In this study, two class(animal, non-animal) image classification is also per-

formed and 96.8% accuracy is achieved with the best performing model. Another study

3



which used a different but again large camera-trap dataset was conducted by Nguyen

et al. (2017) and reported 90.4% accuracy for species classification and 96.6% accuracy

for animal/non-animal classification.

Our intent in this work is not to classify species, rather do animal/non-animal

classification and our result for eliminating images without animals are comparable with

animal/non-animal classification results in the literature. Prior studies that obtained up to

96% accuracy on this task(Norouzzadeh et al. (2018); Nguyen et al. (2017)) were held

with very big and diverse sets of camera-trap images. Our dataset is more challenging in

the way that we work with raw image folders (a folder per camera-trap) and we do not

mix train and test folders(train and test images are from different locations/backgrounds)

which satisfies the real-life scenario where test images come from new camera-trap lo-

cations. Under these conditions, according to our experiments, a state-of-the-art image

classification CNN (ResNet) reached only 80.7% accuracy on animal/non-animal clas-

sification. We present our first contribution by training an object detector CNN(Faster

R-CNN) to separate images that contains animals from the images that does not and elim-

inate the latter ones. Furthermore, we propose a process that combines CNN and back-

ground subtraction methods. In our experiments, we show that this combined method

achieved 99.1% rate of keeping photos with animals, therefore minimizing the loss of

important data, while eliminating more than 50% of images without any animal. To the

best of our knowledge, our study is the first study that combines CNN and background

subtraction to eliminate camera-trap images without animals.

Besides eliminating images without animals, as mentioned before, we also pro-

posed algorithms to eliminate too dark, too bright and blurred images. For blur detec-

tion, we proposed an approach to discriminate partially blurred images from completely

blurred ones. By partitioning the image to subimages, we decide if an image has a clear

area that may contain animals. And for too bright and too dark detections, we employ an

empirical threshold on the bright and dark scores obtained from image histograms.

4



CHAPTER 3

BLURRED, BRIGHT AND DARK IMAGE ELIMINATION

3.1. Blurred Image Elimination

In the last 25 years, many approaches on blur detection in images have taken their

places in the literature. Pavlovic and Tekalp (1992) proposes an approach that utilizes

maximum likelihood on spatial space to recognize blur. Narvekar and Karam (2011)

employ a cumulative probability metric, whereas Tong et al. (2004) use wavelet transfor-

mation based on edge shapes and edge sharpness.

Another method that is commonly used on blur detection is Fourier Transform.

The Fourier Transform is a tool that breaks a waveform (a function or signal) into an

alternate representation, characterized by sine and cosines. In other words, it converts an

image to frequency domain from the spatial domain. On the centered spectrum obtained

by Fourier Transform, low-frequency coefficients are represented close to the center and

the farther away from the center, the higher frequency coefficients are placed. Since the

intensity differences between adjacent pixels of a blurred image are too low, a blurred

image must produce a spectrum with very low frequencies (accumulation in the center).

Fig.3.1 shows two images that are labeled as blurred and clear and their corresponding

Fourier spectra.

Dosselmann and Yang (2012) place rings with a varying radius on the Fourier

spectrum’s center and calculate the responsiveness of areas between rings. The sum of

pixels values between each ring is recorded and used to form a cumulative distribution

function (CDF) shown in Fig. 3.1 (last column). The number of rings in this example

is 75. For each ring, values from the outermost ring up to that ring are summed up and

divided by the total sum of 75 rings (i.e. all spectrum). That is why we reach a CDF

value of 1.0 when the ring number is 1. Also, a hypothetical line is shown in the figure,

representing an image with an equal frequency distribution. Detection of blur using CDF

is as follows. For every ring, the hypothetical line’s value for that ring is subtracted from

the ring’s CDF value. The results are summed up and divided to the summation of the

5



hypothetical line’s values. The obtained value is assigned as φ. The images with a lower

φ than a threshold are labeled as blurred.

The algorithm described above(Dosselmann and Yang, 2012) is very sensitive to

blurriness and does not enable us to determine a threshold that will also identify partially

blurred images. These images are the ones that contain clear parts. We do not want

to eliminate these partially blurred images since animals can be identified in the clear

regions. Examples of partially blurred images can be seen in Fig.3.2. We propose an

approach based on the work of Dosselmann and Yang and compute blurriness in different

parts of images. If only a few parts of the image are blurred, it is not eliminated. We divide

the images into a fixed number of sub-images and for each sub-image we perform blur

detection. The number of blurred sub-images is divided to the total number of sub-images

to obtain the blur percentage of an image. In our experiments, we divided images into 16

equal sub-images and set the blur percentage threshold as 0.75, meaning if an image has

12 or more sub-images that is identified as blur, that image is labeled as blurred. For sub-

images, the number of rings was decreased to 35 from 75 and the threshold for φ value

was set to -0.03.

3.2. Bright and Dark Image Elimination

To eliminate too bright and too dark photos, a histogram based analysis is per-

formed to estimate the darkness and brightness levels. To decrease the false negative

results, partial dark and partial bright images are not specified as useless. Examples of

too dark, too bright and useful (i.e. acceptable) images can be seen in Fig.3.3. Equation

3.1 shows dark pixel ratio (pd) and bright pixel ratio (pb) where hist(i) denotes the num-

ber of pixels with intensity value i. Ratios are in [0,1] range. We observed that taking the

square is more effective since it trivializes small values. These equations assume pixels

with intensity value ≤20 are dark and pixels with intensity value ≥220 are bright, where

intensity range is [0,255]. These are empirical values based on our observations on the

dataset. Also, thresholds on pd and pb were set as 0.94 and 0.84 respectively. Images,

whose darkness or brightness is higher than these thresholds, are eliminated.

pd = (

∑20
i=0 hist(i)∑255
i=0 hist(i)

)2 pb = (

∑255
i=220 hist(i)∑255
i=0 hist(i)

)2 (3.1)

6



(a)

(b)

(c)

Figure 3.1. (a) Left: A blurred image, Right: A clear image. (b) Fourier transforms of
images from (a). (c) Cumulative distribution function (CDF) of the images
from (a) with the algorithm given in Dosselmann and Yang (2012).
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Figure 3.2. Partially blurred images in raw camera-trap dataset
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(a) (b)

(c) (d)

Figure 3.3. Examples of too dark (a), dark but useful (b), too bright (c) and bright but
useful (d) images.
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CHAPTER 4

DETECTING IMAGES WITH ANIMALS

4.1. Deep Learning

Convolutional Neural Network is a type of artificial neural network that is widely

used for image recognition tasks. It assumes there is a high correlation between image

pixels and using convolutions on multiple pixel values instead of using each pixels seper-

ately as in fully connected layers, would take advantage of this correlations. Because of

this feature, CNNs are also good at feature extraction out of correlated data inputs.

A CNN consists of input, output and hidden layers. The hidden layers of CNN(Fig.

4.1) generally consists of 4 layers: Convolutional layer and Rectified Linear Unit(ReLU),

pooling layer, normalization layer and fully connected layers.

In convolution layers, a convolution operation with some kernel(for example 3x3

convolution matrix) is applied to input in a sliding window fashion and the result is passed

to the next layer. Each neuron in convolutional layer processes only its receptive field data

in contrast to neurons in fully connected layers. To put it simply, convolution maps a re-

gion of an image to a feature map. This way the number of learnable parameters decreases

significantly and vanishing or exploding gradient problems that are encountered in a tra-

ditional multi-layer neural networks are prevented. ReLU is an element-wise operation to

replace negative values in the input map with zeros. The purpose of ReLU is to introduce

non-linearity to CNN’s since convolution is a linear operation and the real world data

usually is non-linear. ReLU is applied after every convolution layer.

The pooling layer(Fig. 4.2), is a sub-sampling strategy that is used to reduce the

spatial dimensions in order to decrease the number of parameters and amount of com-

putation, and hence to also control overfitting. Max pooling and average pooling are the

most common pooling strategies. Pooling divides the input map into a set of rectangles

and outputs the maximum or average value for every rectangle, creating an output map

smaller than the input map. For example the most common pooling layer filter is of size

2x2, which shrinks the input map to its quarter size.
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Figure 4.1. A generic CNN structure.(source: Prabhu, Medium.Com, 2018)

The output from the convolutional and pooling layers represent high-level features

of the input image. The purpose of the Fully Connected layer is to use these features for

classifying the input image into various classes based on the training dataset. Apart from

classification, adding a fully-connected layer is also a (usually) cheap way of learning

non-linear combinations of these features. Most of the features from convolutional and

pooling layers may be good for the classification task, but combinations of those features

might be even better.

Convolutional Neural Networks (CNN), especially after AlexNet(Krizhevsky et al.,

2012) won the ILSVRC(Russakovsky et al., 2015) competition of image classification in

2012, have been effectively used on many tasks of computer vision, including object de-

tection as well as image classification. There are quite a few CNN approaches developed

for object detection. Since we propose to use an object detector CNN, let us quickly

review some of those.

OverFeat(Sermanet et al., 2014), an earlier object detection approach, trains a

CNN with both, classifier and regressor heads, and search objects in images with a sliding

window. R-CNN(Girshick et al., 2014) uses selective search to generate 2000 region

proposals. Then the generated proposals are extracted from the image and warped into

square and finally fed into CNN seperately. Feature map produced by CNN is used to

classify by a Support Vector Machine.(SVM) In addition to the classifying objects, R-

CNN also has a regressor head that does bounding box regressions that produces 4 offset

values to make the proposed area more precise. One problem with this approach is that it

still took a huge amount of time to train or test 2000 proposals for an image. The other

problem was the fixed region proposal algorithm. Since there is no learning on generating

the region proposal, the classifier CNN depends on selective search to produce accurate

predictions.
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Figure 4.2. Pooling Example.

To overcome the first problem, authors proposed a slightly different approach with

Fast R-CNN(Girshick, 2015). Proposals still are produced with selective search but in-

stead of feeding all proposals to CNN seperately, all of the image fed into CNN at once

and a convolutional feature map is generated. From the convolutional feature map, the

region of proposals are identified and warped into squares. Then, by using a region of

interest(RoI) pooling layer they are reshaped into a fixed size so that they can be fed into

a fully connected layer.(Fig. 4.4) Although this approach speeds up significantly from R-

CNN, selective search still took 2 seconds per image and it was still a fixed algorithm that

must be depended on. Hence the authors proposed yet another approach: Faster R-CNN.

Faster R-CNN(Ren et al., 2015) employs a Region Proposal Network(RPN) which

shares last convolutional layer of proven CNN(VGG-16 in this case) with a classifier net-

work attached to it to make object proposals(Fig. 4.5). This last shared convolutional

layer acts as a feature map for both networks. RPN produces 2000 region proposals with

different sizes and scales and assigns an objectness score to each proposal. Then RPN

uses non-maximum suppression(NMS) to decrease the number of proposals by elimi-

nating intersecting ones and to further eliminate low score proposals, it applies a score

threshold and ends up with top-N(300 is chosen in the article(Ren et al., 2015)) propos-
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Figure 4.3. R-CNN structure.(source: Girshick et al., 2014)

als. CNN is fed with remaining top-N proposals and it performs classification on the

receptive fields of these regions located in the last shared convolutional layer and bound-

ing box regression on the proposal windows. By making proposals with a neural network

instead of traditional computer vision techniques, Faster R-CNN has gained significant

speed improvements.

YOLO(Redmon et al., 2016) and SSD(Liu et al., 2016) takes another road to pro-

cess the image. They divide the image into regions and train a single neural network that

predicts bounding boxes and class probabilities for each region at once. Although with

the significant speed improvement over Faster R-CNN, early attempts on YOLO did not

manage to reach Faster R-CNN’s accuracy while SSD has also replicate Faster R-CNN

success on accuracy. Recent improvements on YOLO also reached the detection accuracy

of Faster R-CNN while processing real-time.

We chose Faster R-CNN for our object detection module. Its proven effectiveness

on different datasets and the abundance of documentation and source codes are the main

reasons of this choice.

We trained Faster R-CNN as a two class classifier since our aim is detecting im-

ages with animals and not classifying species and we fed the network with a training data

where all images consists of images with animals. This is due to the architecture of object
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Figure 4.4. Fast R-CNN structure.(source: Girshick, 2015)

detection networks as they classify regions and an image with an animal also contains

much more background regions.

We must also clarify why we chose an object detector instead of simply using a

classifier network for animal/non-animal image classification. The reason is that general

purpose image classifiers such as ResNet(He et al., 2016) does not perform well enough

for our dataset obtained from Ministry of Forest and Water Affairs. Our interpretation

of this observation is that since image classifiers looks at the whole image to make a

judgement, it must be confusing to seperate two image with the same background, where

in one of them there is an animal that took small part of image and in other there is

no animal. As the details will be given in Section 5.2, we used separate cameras in

training and test set which suits to the real-life scenario where test images come from

new camera-trap locations. However, in studies in literature(Chen et al., 2014; Villa et al.,

2017; Norouzzadeh et al., 2018), same camera-traps are used for training and test, thus

the same scenes exist in both training and test sets. The latter will be referred as mixed

dataset. When a mixed dataset is used, an effective image classifier exploits background

scene information to discriminate between animal and non-animal images. However,

when new scenes come, its accuracy drops since it does not perform well for the scenes

it did not see before. Table 4.1 shows the comparison of performance between state-of-

the-art classification network ResNet and Faster R-CNN on separate and mixed versions

of the same dataset. While ResNet accuracy drops significantly on separate dataset, drop

in Faster R-CNN is limited since it is trained to find animals in images.
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Figure 4.5. Faster R-CNN structure.(source: Ren et al., 2015)

4.2. Background Subtraction

Background subtraction is a well-known approach to detect moving objects in

real-time videos. Since our camera-trap image sequences exhibit similarity to videos in

terms of low change rate between frames, we decided to evaluate this approach. Camera-

traps collect images with varying time intervals on the same scene, resulting in a long

image sequence with a single background.

Sobral and Vacavant (2014) presents a comprehensive review of background sub-

traction algorithms in his survey. We preferred to use the Gaussian Mixture Model(Zivkovic,

2004) due to its compatibility with bi-modal backgrounds. In this approach, every pixel

coordinate is represented as a Gaussian distribution and with every incoming frame, Gaus-

sian distributions of every pixel are shaped. The pixels that are outliers to these distribu-

tions are labeled as foreground pixels while otherwise, pixels are labeled as background

pixels. To utilize this approach, we made the images obtained from background sub-

traction go through a series of morphological operations. After this, we apply connected
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Table 4.1. ResNet(He et al., 2016) and Faster R-CNN(Ren et al., 2015) accuracies for
animal/non-animal image classification.

Faster R-CNN Accuracy ResNet Accuracy
Mixed Dataset 94.3 % 95.6 %
Separate Dataset 90.2 % 80.7 %

component analysis to the images to capture the foreground objects and calculate their

areas. Objects whose area is higher than a threshold are defined as foreground objects.

Fig.4.6a shows a successful example of a component defined as object.

(a)

(b)

Figure 4.6. A successful (a) and a failed (b) example of detecting animals with back-
ground subtraction. Images on the left are two consecutive images in raw
camera-trap dataset. Since the difference between images is too much,
the background subtraction result of second image implies the image has
animal while there is not.

Failures usually happen when lighting rapidly changes between two consecutive

images (an example is given in Fig.4.6b). Since camera-trap image sequence is collected

from the same camera-trap during varying time intervals, there are cases where the time

interval between two images is low but lighting substantially changes or where the time
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interval between two images is high but the lighting and background on these images

looks identical (two images captured on same hours of different days). It is necessary to

minimize the differences between frames to achieve good results. For this purpose, we

propose an algorithm to group images with the same background.

First, we construct a similarity metric between two images, by comparing images

pixel-by-pixel. If the absolute difference of a pixel between two images is higher than

an empirical threshold, we count that pixel as ’changed’. The rate of the changed pixels

establishes our similarity metric. A low rate indicates a high similarity between two

images. After we find the most similar image to the first image on the image series, we

put it right after the first image in series and then we start to search the most similar

image to the second image in series and so on. We also group sorted images from where

the lighting changes significantly (low similarity between consecutive images) on image

series. We see that images captured at night usually grouped as one cluster while images

captured during daytime usually clustered into several groups. An example clustering

result can be seen in Fig.4.7. Later, we apply background subtraction to each group

separately. To put it differently, the background model that is learned is forgotten before

processing a new cluster. The flow of our background subtraction approach is given in

Fig.4.8.

The proposed sorting algorithm improves the results since it decreases the number

of the failures, especially the ones similar to Fig.4.6b. When the images are not sorted, a

few consecutive images share the same background (illumination) and every substantial

change in lighting results in a failure. However, after sorting, many more images benefit

from the same background (such as images taken at night or images of the same time of

the day but taken at different days). Thus, failed cases occur less often.
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Figure 4.7. Clusters that show up after sorting the images. Starting from top-left, 1st,
5th, 13th, and 25th images are starting points of new clusters.

Figure 4.8. Steps of the proposed pre-processing for background subtraction approach.
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CHAPTER 5

EXPERIMENTAL RESULTS

We obtain our raw camera-trap dataset that consists of nearly 40000 camera-trap

images from the Ministry of Forest and Water Affairs, Republic of Turkey. These images

are collected from different cameras at different times and stored in a way that each folder

in raw dataset comes from a distinct background scene. The images from the same scene

differs in capturing time up to few months. First we manually search through the images to

label blurred, too bright and too dark images. Then we created bounding-box annotations

to more than 2500 images with animals in Pascal VOC annotation format to be used for

experiments of detecting images with animals. One thing we paid attention during the

creation of annotated dataset is to ensure variation in terms of scenes, lighting conditions

and animals. These images and their annotations are available on http://cvrg.iyte.edu.tr/.

5.1. Experiments on Eliminating Blurred, Too Dark and Too Bright

Images

We prepared 692 images for blur detection experiments. 186 of them are blurred,

181 of them are partially blurred while the remaining 325 images are clear. Table 5.1

shows the accuracy of the classification of images following the approach explained in

Section 3.1. Out of 186 blurred images, 175 are labeled as blurred, achieving 94.1%

accuracy. All of the clear images are remained, and for partially blurred images, only 20

out of 181 images are incorrectly labeled as blurred, achieving 88.9% accuracy. 94.1%

blur elimination is good since it saves human time, but it comes with a cost of eliminating

11% of partially blurred photos.

In Section 3.2, we explained our method of eliminating too dark and too bright

images. We prepared 1017 too dark, 7 too bright (they are rare) and 2250 useful images

for the experiments. Set of useful images contains many dark and bright images close to

the borderline. The success of classification can be seen in Table 5.2. Only 11 dark images

are incorrectly classified, no errors made on bright and useful images. Thus, this module
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Table 5.1. Blurred image detection results

Classes Number of Images Identified Blurred Identified Clear Accuracy
Blurred 186 175 11 94.1%
Clear 325 0 325 100%
Partially Blurred 181 20 161 88.9%
TOTAL 95.5%

Table 5.2. Confusion matrix for detection of too bright and too dark images

Classes Predicted Classes
Dark Bright Useful

Dark 1006 0 11
Bright 0 7 0
Useful 0 0 2250

is more effective than the blur elimination since it eliminates 99% of useless photos with

no false-negatives.

5.2. Experiments on Eliminating Images without Animals

We present the experiment results in three subsections. Results of deep learning

methods are given in Section 5.2.1, results of background subtraction method are given in

Section 5.2.2 and finally Section 5.2.3 presents the performance of combining these two

methods.

All datasets used in Section 5.2 are shown in Table 5.3. In Ministry of FWA

dataset, we have 958 images in our training set and 1955 images in our test set. The

cameras in training and test sets are separate.

We formed two separate test sets for Ministry of FWA images. One set (DS-

1) contains low number of animals while the other test set (DS-2) has high number of

animals (cf. Table 5.3). We observe that any camera-trap folder follows one of these two

patterns and we aimed to analyze results separately.

In addition to Ministry of FWA dataset, we use a camera-trap dataset (DS-3) pro-

vided by University of Missouri(Chen et al., 2014). We used DS-3 only for Section 5.2.1

since this dataset is not in raw folders and background subtraction method cannot be ap-

plied.
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Table 5.3. Datasets used for the object detection experiments

Datasets # of Train Images # of Test Images

Ministry of FWA DS-1 958 707
DS-2 1248

Missouri University DS-3 871 1474

5.2.1. Deep Learning

All animals are regarded as one class during CNN training in accordance with

our goal of eliminating images without animals and remaining the ones that have animals

regardless of their species. This approach is also a good choice for the situations where

one can encounter animals which do not exist in the training set.

At test time, we keep an image if an animal is detected in it. Success of the sys-

tem is measured with two criteria. One is the elimination rate of images without animals

and the other is the remain rate of images with animals. We desire both rates to be high.

Firstly, we trained and tested Faster R-CNN using Ministry of FWA images (DS-1 and

DS-2 in Table 5.3). Results are shown in Fig.5.1 where eliminated image and remained

image accuracies are depicted separately for different score thresholds. An increased

threshold requires Faster R-CNN object boxes have higher confidence scores not to elim-

inate an image. It results in higher elimination accuracy but remained image accuracy

drops since it starts to miss actual animals. On the left side (threshold≤50) accuracies

do not change since no Faster R-CNN object box has probability less than 0.5 (otherwise

box would have been classified as background). Table 5.4 shows the detailed result of

the experiment when threshold is kept at 0.5. On the average of two datasets, average of

eliminated and remained image accuracies is 90.2%.

We also tested our model trained with Ministry of FWA on Missouri University

test set (DS-3). The results are shown in Table 5.5. Both eliminated and remained image

Table 5.4. Percentages of eliminated and remained images with deep learning

Dataset # of images Success Rate
Animal Empty Eliminated Remained

DS-1 76 631 90.8 51.3
DS-2 941 307 86.9 94.1
TOTAL 1015 938 89.5 91.1
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Figure 5.1. Results on deep learning experiments with different score thresholds.

accuracies show a decline, pointing out that the generalization capacity of a model trained

with a camera-trap dataset from a single source is limited.

Another experiment we perform was to investigate the performance of ensemble

of trained neural networks. Ensemble of NNs are quite popular with CNNs in different

domains(Ju et al., 2018; Islam and Zhang, 2017). For this purpose, we trained four sep-

arate networks to be used as the classifier of Faster R-CNN model (Fig. 4.5) each use

different and random 80% portions of the training set of Ministry of FWA. They share the

same RPN. At test time, we ensemble them by unweighted averaging. In other words, for

each window proposed by RPN, the scores of four classifiers are averaged.

Test set consisting of both DS-1 and DS-2. Results are shown in Table 5.6 where

baseline learner refers to the single Faster R-CNN that uses 100% of training data. When

Table 5.5. Percentages of eliminated and remained images on DS-3 with CNN trained
with DS-1 & DS-2

Dataset # of images Success Rate
Animal Empty Eliminated Remained

DS-3 886 588 68.3 81.9
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Table 5.6. Comparison between Ensemble of Networks and Baseline Learner using
Ministry of FWA dataset

Methods # of images Success Rate
Animal Empty Eliminated Remained Accuracy

Ensemble of Networks 1015 938 89.4 92.1 90.7
Baseline Learner 89.4 91.0 90.2

we compare baseline learner and ensemble of networks, we observe a small improvement

in total accuracy as expected.

5.2.2. Background Subtraction

Although deep learning gives very good elimination and remained percentages

(both around 90%), a few problems were noticed when we examined the false results.

Fig.5.2 shows some example detections. Some animals were missed due to the similarity

of their texture with the background (Fig. 5.2c), whereas some large stones are mistaken

as animals (Fig. 5.2d). These problems can be fixed with background subtraction since it

will detect animals that was not previously there and it will not detect rocks that stay in

every frame.

As explained in Section 4.2, we sort and cluster images with the same background,

we apply background subtraction to each cluster of images on its own. The experiment re-

sults on DS-1 and DS-2 are given in Table 5.7. Our first observation is that the eliminated

rate drops on both sets when compared to deep learning (cf. Table 5.4). This indicates

that background subtraction causes a higher number of false-positives. On the other hand,

for DS-2, remained rate increased to 75% (cf. Table 5.4) catching most of the animals

that are missed by deep learning method.

Table 5.7. Percentages of eliminated and remained images with background subtrac-
tion approach

Datasets # of images Success Rate
Animal Empty Eliminated Remained

DS-1 76 631 60.6 75
DS-2 941 307 46.9 91.9
TOTAL 1015 938 56.1 90.8
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(a) (b)

(c) (d)

Figure 5.2. Some examples of correct detections (a,b), missed animals (c) and false-
positive detections (d) with deep learning method.

5.2.3. Combined Method

Although background subtraction method’s results are not as successful as deep

learning’s, we observed that the two methods generally fail on different images. There-

fore, we decided to perform an experiment that combines the decisions of both methods.

To eliminate an image, both methods must vote so. Otherwise, it is enough for either

method to vote to remain an image in order to remain an image. This caused a drop

on eliminated image accuracy and reduced it to 54.5% but the remained image accuracy

reached %99.1. Table 5.8 shows the results of this experiment. When we examined the

missed 0.9%, we noticed that missed animals also are seen in neighbor images that are re-

mained (camera-traps keeps capturing until there is no movement in scene). Thus, we can

say that around 500 images without animals were eliminated with no individual animal

was missed.
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Table 5.8. Percentages of eliminated and remained images with combined method

Datasets # of images Success Rate
Animal Empty Eliminated Remained

DS-1 76 631 60.0 89.4
DS-2 941 307 43.3 99.9
TOTAL 1015 938 54.5 99.1
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CHAPTER 6

CONCLUSIONS

We aimed to decrease the workload of wild-life researchers by reducing the num-

ber of camera-trap images to be visually examined. We developed different modules of

image elimination. Blurred image elimination module worked with 94% accuracy with

a cost of eliminating 11% of partially blurred photos. Too bright and too dark image

elimination rate is 99% without eliminating any useful image.

Regarding animal/non-animal image classification, we employed an object detec-

tor CNN and kept images if any animal is found in images. Our approach reached an

accuracy of 90.2%. We showed with experiments that this is well above the performance

of state-of-the-art image classifier CNNs (which were used in previous work on camera-

traps). Moreover our combined method achieved 99.1% remained image accuracy while

obtaining 54.5% eliminated image accuracy. Overall accuracy seems to be low, but high

remaining rate is preferred because penalty of a false-negative result is much higher (since

that image will not be shown to the expert anymore).
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Hernández-Serna, A. and L. F. Jiménez-Segura (2014). Automatic identification of

species with neural networks. PeerJ 2, e563.

27



Islam, J. and Y. Zhang (2017). An ensemble of deep convolutional neural net-

works for alzheimer’s disease detection and classification. In Machine Learning for

Health Workshop at Conference on Neural Information Processing Systems (NIPS

2017) abs/1712.01675.

Ju, C., A. Bibaut, and M. van der Laan (2018). The relative performance of ensemble

methods with deep convolutional neural networks for image classification. Journal of

Applied Statistics 45(15), 2800–2818.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with deep

convolutional neural networks. In Proceedings of the 25th International Conference

on Neural Information Processing Systems - Volume 1, NIPS’12, USA, pp. 1097–

1105. Curran Associates Inc.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg (2016).

Ssd: Single shot multibox detector. In B. Leibe, J. Matas, N. Sebe, and M. Welling

(Eds.), Computer Vision – ECCV 2016, Cham, pp. 21–37. Springer International Pub-

lishing.

Narvekar, N. D. and L. J. Karam (2011). A no-reference image blur metric based on the

cumulative probability of blur detection (cpbd). IEEE Transactions on Image Pro-

cessing 20(9), 2678–2683.

Nguyen, H., S. J. Maclagan, T. D. Nguyen, T. Nguyen, P. Flemons, K. Andrews, E. G.

Ritchie, and D. Phung (2017). Animal recognition and identification with deep con-

volutional neural networks for automated wildlife monitoring. In 2017 IEEE Interna-

tional Conference on Data Science and Advanced Analytics (DSAA), pp. 40–49.

Norouzzadeh, M. S., A. Nguyen, M. Kosmala, A. Swanson, M. S. Palmer, C. Packer, and

J. Clune (2018). Automatically identifying, counting, and describing wild animals

in camera-trap images with deep learning. Proceedings of the National Academy of

Sciences 115(25), E5716–E5725.

Pavlovic, G. and A. M. Tekalp (1992). Maximum likelihood parametric blur identification

based on a continuous spatial domain model. IEEE Transactions on Image Process-

28



ing 1(4), 496–504.

Prabhu, Medium.Com (2018). Understanding of convolutional neural network

(cnn) – deep learning. https://medium.com/@RaghavPrabhu/understanding-of-

convolutional-neural-network-cnn-deep-learning-99760835f148. [Online; accessed

14-November-2018].

Redmon, J., S. K. Divvala, R. B. Girshick, and A. Farhadi (2016). You only look once:

Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 779–788.

Ren, S., K. He, R. Girshick, and J. Sun (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. In Proceedings of the 28th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’15, Cam-

bridge, MA, USA, pp. 91–99. MIT Press.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015). Imagenet large scale

visual recognition challenge. International Journal of Computer Vision 115(3), 211–

252.

Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun (2014). Over-

feat: Integrated recognition, localization and detection using convolutional networks.

In International Conference on Learning Representations (ICLR2014), CBLS, April

2014.

Sobral, A. and A. Vacavant (2014). A comprehensive review of background subtraction

algorithms evaluated with synthetic and real videos. Computer Vision and Image Un-

derstanding 122, 4 – 21.

Song, D. and Y. Xu (2010). A low false negative filter for detecting rare bird species from

short video segments using a probable observation data set-based ekf method. IEEE

Transactions on Image Processing 19(9), 2321–2331.

Tong, H., M. Li, H. Zhang, and C. Zhang (2004). Blur detection for digital images using

29



wavelet transform. In 2004 IEEE International Conference on Multimedia and Expo

(ICME) (IEEE Cat. No.04TH8763), Volume 1, pp. 17–20 Vol.1.

Villa, A. G., A. Salazar, and F. Vargas (2017). Towards automatic wild animal monitoring:

Identification of animal species in camera-trap images using very deep convolutional

neural networks. Ecological Informatics 41, 24 – 32.

Weinstein, B. G. (2015). Motionmeerkat: integrating motion video detection and ecolog-

ical monitoring. Methods in Ecology and Evolution 6(3), 357–362.

Zivkovic, Z. (2004). Improved adaptive gaussian mixture model for background subtrac-

tion. In Proceedings of the 17th International Conference on Pattern Recognition,

2004. ICPR 2004., Volume 2, pp. 28–31 Vol.2.

30


