
 

 

 

 

 

IMPROVEMENT ON MOTION-GUIDED 

SIAMESE OBJECT TRACKING NETWORKS 

USING PRIORITIZED WINDOWS 

 

 

 

 

 

 

A Thesis Submitted to 

the Graduate School of Engineering and Science of 

İzmir Institute of Technology 

in Partial Fulfillment of the Requirements for the Degree of 

 

MASTER OF SCIENCE 
 

in Computer Engineering 

 

 

 

 

by 

Ünver Can ÜNLÜ 
 

 

 

 

 

 

 

July 2021 

İZMİR  



 

 

ACKNOWLEDGEMENTS 

 

 

There were people who supported and helped me during this research. First, I 

would like to acknowledge my thesis advisor Assoc. Prof. Yalın BAŞTANLAR, 

especially for guiding me and his efforts throughout this research. In addition, my thesis 

jury members, Assoc. Prof. Mustafa ÖZUYSAL and Assoc. Prof. Fatih NAR helped me 

present better research thanks to their valuable feedbacks. Finally, I would like to thank 

my family and life-long friends for beside me always. This accomplishment would not 

have been possible without them.  



iii 

 

ABSTRACT 

 

IMPROVEMENT ON MOTION-GUIDED 

SIAMESE OBJECT TRACKING NETWORKS 

USING PRIORITIZED WINDOWS 

 

In recent years, there has been significant progress in Visual Object Tracking with 

evolutions of both computers and learning algorithms, especially in Neural Networks. 

Therefore, we obtain better results by combining Neural Networks and traditional 

tracking methods such as Kalman Filter and Correlation Filters. SiamFC is an example 

of such algorithms because SiamFC combines Siamese Neural Networks and Correlation 

Filters. SiamFC is open to development because it does not have an online learning 

process. An example of the improved SiamFC is Kalman-Siam that combines Kalman 

Filter and Multi-feature SiamFC. Kalman-Siam uses Kalman-Filter to solve the occlusion 

situation problem by processing the target's previous motion trajectory. Therefore, the 

tracking can fail in other complex scenarios for Kalman-Siam. One of the methods for 

solving such problems is detecting this situation and starting the re-tracking process as 

we used in this research. Also, we used a parameter calculated on the response map after 

the correlation operation in SiamFC to detect these situations. First, our algorithm 

generates possible prioritized search windows. Then, it runs in a specific order of priority 

for these generated search windows surrounding the target's last known location. We 

named this process Adaptive Window Search that starts from the highest priority search 

windows and continues until the lowest search windows do not exist. Therefore, we 

named our algorithm Adaptive-Kalman-Siam. We demonstrated more successful results 

on commonly used datasets. Adaptive-Kalman-Siam tracks an object better than SiamFC 

and Kalman-Siam in Background Clutters, Fast Motion, Motion Blur, and Occlusion 

complex tracking scenarios.  
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ÖZET 

 

NESNE TAKİBİNDE KULLANILAN  

HAREKET-YÖNLENDİRMELİ SİYAM AĞLARINDA  

ÖNCELİKLENDİRİLMİŞ PENCERELER İLE İYİLEŞTİRME 

 

Son yıllarda hem Yapay Sinir Ağlarının hem öğrenme algoritmalarının gelişimi 

ile Görsel Nesne İzlemede önemli ilerlemeler kaydedilmiştir. Bu sayede Kalman Filtresi 

ve Korelasyon Filtreleri gibi geleneksel obje takip yöntemleri ile Yapay Sinir Ağları 

birleştirerek daha iyi sonuçlar elde ediyoruz. SiamFC, bu tür algoritmalara bir örnektir. 

Çünkü SiamFC, Siyam Yapay Sinir Ağlarını ve Korelasyon Filtrelerini birleştirir. 

Bununla birlikte, SiamFC geliştirilmeye oldukça açıktır. Bunun nedeni, SiamFC'nin obje 

takibi sırasında bir öğrenme sürecine sahip olmamasıdır. Kalman-Siam bu alanda 

iyileştirilmiş SiamFC'ye bir örnektir. Kalman-Siam, Kalman Filtresi ile Çok Katmanlı 

SiamFC’yi birleştirir. Kalman-Siam, takip edilen objenin önceki hareketini işleyerek 

objelerin üst üste gelme durumu problemini çözmek için Kalman Filtresini kullanır. 

Kalman-Siam için diğer zorlu senaryolarda takip işlemi başarısız olabilir. Bu tür sorunları 

çözmenin yollarından biri de bu durumu tespit etmek ve yeniden takip sürecinin 

başlatılmasıdır. Bu araştırmada bu yöntemi kullandık. Ayrıca bu durumları tespit etmek 

için algoritmamızda SiamFC'de korelasyon işlemi sonrası sonuç üzerinde hesaplanan bir 

parametre kullandık. İlk önce, algoritmamız önceliklendirilmiş arama pencereleri 

oluşturur. Ardından algoritma, yeniden takip için hedefin bilinen son konumunu 

çevreleyerek oluşturulan bu arama pencereleri için belirli bir öncelik sırasına göre çalışır. 

Yüksek öncelikli arama pencerelerinden başlayıp arama pencereleri kalmayana kadar bu 

yeniden takip sürecini Adaptive Window Search olarak adlandırdık. Bu nedenle 

algoritmamıza Adaptive-Kalman-Siam adını verdik. Yaygın olarak kullanılan veri setleri 

üzerindeki sonuçlarla daha başarılı bir yeniden takip süreci gözlemledik. Bu araştırmada 

önerilen Adaptive-Kalman-Siam, bir nesneyi Arka Plan Karmaşaları, Hızlı Hareket, 

Hareket Bulanıklığı ve Üst Üste Gelme gibi karmaşık takip senaryolarında SiamFC ve 

Kalman-Siam'dan daha iyi obje takibi yapmaktadır.  
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CHAPTER 1  

 

INTRODUCTION 

 

 

This chapter will provide a brief and general introduction to Visual Object 

Tracking and give the aim of the thesis. First, we describe the steps of the object tracking 

process. Then, we classify the tracking algorithms fundamentally according to three 

different characteristics. Finally, we describe complex scenarios, which researchers try to 

solve, in Visual Object Tracking. 

 

1.1. Visual Object Tracking 

 

Visual Object Tracking is a task identifying a region of interest within an image 

sequence or a video. It is a sub-field of Computer Vision, and there are many critical real-

world applications. For example, robotics, video surveillance, and autonomous vehicles. 

Researchers pay attention to Visual Object Tracking because it is open to new inventions. 

The performance and efficiency of tracking algorithms depend on many factors. Visual 

Object Tracking has some difficulties in complex tracking scenarios. Researchers try to 

solve them using especially Machine Learning, Image Processing, and Deep Learning. 

 

Figure 1.1 The blocks of traditional Visual Object Tracker design  
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According to Fiaz et al. [1], there are four sequential steps in the Visual Object 

Tracking process: target initialization, appearance model, motion prediction, and target 

positioning. The first step is target initialization which is the task of annotating the region 

of interest. This annotation is the target representation of the region of interest. In many 

ways, it can be bounding box, ellipse, centroid, skeleton, contour, or silhouette in Figure 

1.2. The second step is appearance modeling, representing the region of interest as 

features and building a mathematical model to detect targets in the image sequence and 

learn how to detect them. The third step is motion prediction, and it is calculating the 

target's position changes in the current image. The final step is target positioning is 

determining the target position in the current image. Figure 1.1 shows the visualization 

of the processes of object tracking step by step in order. 

 

Figure 1.2 Object representations [2] (a) centroid, (b) multiple points, (c) rectangular 

patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) 

complete object contour, (h) control points on object contour, (i) object silhouette  

 

1.2. Classification Of Tracking Approaches 

 

We can classify Visual Object Tracking algorithms in three main differences: 

features, principles, and the number of tracked objects in this section. This chapter 

describes each of these classifications in detail.  
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1.2.1. Classification By Features 

 

According to Fiaz et al. [1], we can divide Visual Object Tracking algorithms into 

two groups which feature the algorithm uses. The first is Handcrafted (HC), and the other 

is Deep-Learning-based features. For example, Histogram of Oriented Gradients (HOG), 

Scale-Invariant Feature Transform (SIFT), and color could be Handcrafted features. 

These are the most common ways to represent target views after achieving successful 

results in various fields, including Image Classification, Object Detection, and Image 

Segmentation. However, researchers have started using Deep-Learning-based features in 

recent years. Generally, Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), and Residual Neural Networks obtain Deep-Learning-based Features. 

However, more data is needed to train an object tracker whose model uses one of these 

neural networks. Algorithms using Handcrafted features also give successful results, 

although Deep-Learning-based features achieve successful results. 

 

1.2.2. Classification By Learning Approaches 

 

According to learning approaches, we can divide Visual Object Tracking 

algorithms into Online Tracking and Offline Tracking. In Online Tracking, the object 

tracking algorithm has an online learning process that adapts itself to the target's situation 

changes while tracking. In Offline Tracking, there is not any model updating while 

tracking. Depending on the number of the calculation of the online learning process, 

Online Tracking can have a time constraint in the application. 

 

1.2.3. Classification By The Number Of Tracked Objects 

 

According to the number of tracked objects, we can divide Visual Object Tracking 

algorithms into two groups: Single-Object Tracking (SOT) and Multiple-Object Tracking 

(MOT). Although MOT is like the multiplication of SOT as a tracking process, specific 

algorithms can have lower execution times and achieve better results.  
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Table 1.1 Complex Visual Object Tracking scenarios from OTB dataset [3] 

Name Abbreviation Definition 

Illumination Variation IV 
The illumination in the target region is 

significantly changed. 

Scale Variation SV 

The ratio of the bounding boxes of the first 

frame and the current frame is out of the 

range ts, ts > 1 (ts=2). 

Occlusion OCC The target is partially or fully occluded. 

Deformation DEF Non-rigid object deformation. 

Motion Blur MB 
The target region is blurred due to the 

motion of the target or camera. 

Fast Motion FM 
The motion of the ground-truth is larger 

than tm pixels (tm=20). 

In-Plane Rotation IPR The target rotates in the image plane. 

Out-of-Plane Rotation OPR The target rotates out of the image plane. 

Out-of-View OV Some portion of the target leaves the view. 

Background Clutters BC 
The background near the target has a similar 

color or texture as the target. 

Low Resolution LR 
The number of pixels inside the ground-

truth bounding box is less than tr (tr =400). 

 

1.3. Challenges Of Visual Object Tracking 

 

Although Visual Object Tracking algorithms have remarkable results, there are 

some difficulties in real-time applications such as loss of information in image projection, 

low image quality, the target's uncertainties, movement, illumination variation, and object 

occlusion. These difficulties make complex tracking scenarios, and they affect the 

performance and accuracy of the object tracker. Nevertheless, tracking algorithms try to 

handle these complex scenarios. Table 1.1 shows these complex scenarios provided by 

the OTB dataset [3] for their sequences.  
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1.4. Motivation And Aim Of The Study 

 

We can use Siamese Neural Networks in Visual Object Tracking algorithms. 

Although SiamFC [4] gives us a good solution as an object tracking algorithm based on 

Siamese Neural Networks, SiamFC is not an online tracking algorithm because SiamFC 

does not have any learning process during tracking. Also, there are many updated versions 

of SiamFC. For example, Kalman-Siam [5] proposes a combination of Kalman Filter [6], 

Multi-feature fusion [7], and SiamFC. Kalman-Siam uses the target's previous trajectory 

information thanks to Kalman Filter and P parameter calculation on the response map to 

solve Occlusion tracking scenarios. However, using the target's previous trajectory 

information is not enough for other complex tracking scenarios such as Background 

Clutters, Fast Motion, Motion Blur. Also, there is not a re-tracking mechanism for neither 

SiamFC nor Kalman-Siam. Therefore, we develop a re-tracking mechanism for Kalman-

Siam. This mechanism generates possible prioritized search windows surrounding the 

target's last know location first, then finds a suitable search window from the generated 

ones in this search windows' priority order. We call this process Adaptive Window 

Search. To determine tracking failure, start Adaptive Window Search, and find the 

suitable search window, we use the APCE parameter on the response map. Also, we 

named our tracker as Adaptive-Kalman-Siam. This thesis proposes that the Adaptive-

Kalman-Siam tracker solves other complex tracking scenarios by adding a re-tracking 

mechanism to Kalman-Siam alongside Kalman Filter. In summary, we make the 

following contributions: 

• We developed a re-tracking mechanism for Kalman-Siam. First, this mechanism 

generates possible prioritized search windows surrounding the target's last know 

location, then finds a suitable search window by lowering the priority as it cannot 

find. We named this re-tracking mechanism as Adaptive Window Search. 

• We use the APCE parameter on the response map to detect tracking failure 

situations, start the Adaptive Window Search process and find a suitable search 

window from the generated possible search window. 

 Our tracker performance achieved better results than Kalman-Siam in OTB-100 

[3], TC-128 [8] datasets, and specially selected sequences from these datasets. 

Furthermore, the tracker can be run in real like Kalman-Siam.  
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1.5. Organization Of The Thesis 

 

The organization of the rest of this thesis is as follows: Chapter 2 provides 

literature survey about object tracking, including Kalman Filter, Correlation Filters, and 

Siamese Neural Networks based approaches. Chapter 3 explains the proposed tracking 

method. Benchmarking on datasets is described in Chapter 4. Chapter 5 contains the 

benchmarking results and the analysis of the results. Finally, Chapter 6 gives conclusions.  
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CHAPTER 2  

 

LITERATURE SURVEY 

 

 

Many object tracking algorithms have successful results. We need to research 

Visual Object Tracking literature to understand these algorithms also before providing a 

solution. This chapter investigates Kalman Filter and common architectures of 

Correlation Filters and Siamese Neural Networks with applications such as SiamFC and 

Kalman-Siam tracking algorithms. 

 

2.1. Kalman Filter 

 

Rudolf Kalman invented the Kalman Filter in 1960. Kalman Filter is a recursive 

algorithm and uses previous state measurements of a system over time and predicts 

unknown state estimations using Linear Equation and assuming noise as Gaussian 

Distribution. Also, Kalman Filter has many variations in handling different scenarios and 

usage areas due to its simplicity and real-time operation. Some of the applications are 

navigation vehicles for radar tracking, finance for risk forecasting, signal processing. [9] 

 

2.1.1. Kalman Filter Steps 

 

Kalman Filter has two steps: Prediction and Update steps. First, the Prediction 

Step is also called Time Update Step. Briefly, the Prediction Step is responsible for 

forwarding the current state and error covariance using previous states. In the Prediction 

Step Equations formulas, x and P represent the current state and the error covariance. 

Second, the Update Step is also called the Corrector Step. The Update Step is responsible 

for improving estimates using Kalman Gain with newly obtained state measurements. In 

the Update Step Equations formulas, K and z represent The Kalman Gain and the 

Measured State, respectively. Also, this kind of algorithm is classified as Predictor-

Corrector or Prediction-Update. [9]  
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We use terms in priori for the Prediction Step and posteriori for the Update Step 

estimates in the equations. The Prediction Step Equations are both Equation 2.1 and 

Equation 2.2. The Update Step Equations are both Equation 2.3, Equation 2.4, and 

Equation 2.5. In addition to these equations, Equation 2.6 is the Measurement model of 

the system. 

x̂k
− = Ax̂k−1

− + Buk−1     (2.1) 

Pk
− = APk−1

− AT + Q     (2.2) 

Kk = Pk
−HT(HPk

−HT + R)−1    (2.3) 

x̂k = x̂k
− + Kk(zk − Hx̂k

−)    (2.4) 

Pk = (I − KkH)Pk
−      (2.5) 

zk = Hxk + vk      (2.6) 

 

2.1.2. Object Tracking Using Kalman Filter In 2D Space 

 

We can use Kalman Filter implementation based on the Taylor Series estimation 

of Position, Velocity, and Acceleration formulas for Object Tracking in two-dimensional 

space. We assume that Acceleration is constant, so state variables are Position and 

Velocity on the x-axis and the y-axis, as shown in Newton Dot Notation in Equation 2.7. 

Briefly, the number of dots over a variable means its derivative respect to its dependent 

variables at the same level as the number of dots over itself in Newton Dot Notation. 

xk⃗⃗⃗⃗ = [xk yk ẋk ẏk]T    (2.7) 

Both Equation 2.8 and Equation 2.9 are the Position formulas on the x-axis and y-

axis. Both Equation 2.10 and Equation 2.11 are the Velocity formulas on the x-axis and 

y-axis as the Kinematic Equation depends on time.  
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Xk = xk−1 + ẋk−1∆t +
1

2
ẍk−1(∆t)2   (2.8) 

yk = yk−1 + ẏk−1∆t +
1

2
ÿk−1(∆t)2   (2.9) 

ẋk = ẋk−1 + ẍk−1∆t     (2.10) 

ẏk = ẏk−1 + ÿk−1∆t     (2.11) 

We can write the Kinematic Equations as Linear Equation form in Equation 2.12. 

Later, we can simplify these equations as matrix multiplication form in Equation 2.13. 

xk⃗⃗⃗⃗ =

[
 
 
 
 xk−1 + ẋk−1∆t +

1

2
ẍk−1(∆t)2

yk−1 + ẏk−1∆t +
1

2
ÿk−1(∆t)2

ẋk−1 + ẍk−1∆t
ẏk−1 + ÿk−1∆t ]

 
 
 
 

   (2.12) 

xk⃗⃗⃗⃗ = [

1 0
0 1

∆t 0
0 ∆t

0 0
0 0

1 0
0 1

] [

xk−1
yk−1

ẋk−1

ẏk−1

] +

[
 
 
 
1

2
(∆t)2

0
∆t
0

0
1

2
(∆t)2

0
∆t ]

 
 
 
[
ẍk−1

ÿk−1
]  (2.13) 

We can simplify this matrix multiplication form in the Prediction Step, as shown 

in Equation 2.1. And then, we get the State Transition Matrix A in Equation 2.14 and the 

Control Matrix B in Equation 2.15. 

A = [

1 0
0 1

∆t 0
0 ∆t

0 0
0 0

1 0
0 1

]    (2.14)  

B =

[
 
 
 
1

2
(∆t)2

0
∆t
0

0
1

2
(∆t)2

0
∆t ]

 
 
 
    (2.15)  
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In the Measurement Equation shown in Equation 2.6, we can assume that we can 

measure only the Position on the x-axis and y-axis. So, the Process Noise Vector V is 

equal to zero, and we can write the Measurement Equation as Equation 2.16. Then we get 

the Transformation Matrix H in Equation 2.17. 

zk⃗⃗  ⃗ = [
1 0 0 0
0 1 0 0

] [

xk
yk

ẋk

ẏk

] + vk   (2.16) 

H = [
1 0 0 0
0 1 0 0

]    (2.17) 

 

Table 2.1 Process Noise Covariance Q 

 x y ẋ ẏ 

x σx
2 0 σxσẋ 0 

y 0 σy
2 0 σyσẏ 

ẋ σẋσx 0 σẋ
2 0 

ẏ 0 σẏσy 0 σẏ
2 

 

The Position and the Velocity on different axes are independent of each other. 

However, the Position and the Velocity on the same axes are dependent. Thus, we can 

generate the Process Noise Covariance Q according to Table 2.1 using only the Standard 

Deviations of Position and Velocity on the x-axis and y-axis. And then, we can write the 

Process Noise Covariance Q as matrix form as shown in Equation 2.18. 

Q =

[
 
 
 
 

σx
2 0

0 σy
2

σxσẋ 0
0 σyσẏ

σẋσx 0
0 σẏσy

σẋ
2 0

0 σẏ
2

]
 
 
 
 

   (2.18)  
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We can simplify the Process Noise Covariance Matrix Q using just the Standard 

Deviations of the Position and the Velocity replacing shown in Equation 2.19, Equation 

2.20, Equation 2.21, and Equation 2.22. Then, we get Equation 2.23 after all replacing 

operations. 

σx =
1

2
(∆t)2σa     (2.19) 

σy =
1

2
(∆t)2σa     (2.20) 

σẋ = (∆t)σa     (2.21) 

σẏ = (∆t)σa     (2.22) 

Q =

[
 
 
 
 
 
1

4
(∆t)4 0

0
1

4
(∆t)4

1

2
(∆t)3 0

0
1

2
(∆t)3

1

2
(∆t)3 0

0
1

2
(∆t)3

(∆t)2 0

0 (∆t)2

]
 
 
 
 
 

  (2.23) 

 

Table 2.2 Measurement Noise R 

 x y 

x σx
2 0 

y 0 σy
2 

 

We can create the Measurement Noise R according to Table 2.2 using the only 

Position Variance on the x-axis and y-axis. And then, we can write the Measurement 

Noise R as matrix form as shown in Equation 2.24. 

R = [
σx

2 0

0 σy
2]     (2.24)  
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2.2. Correlation Filter Based Tracking 

 

Correlation measures that how variables are related to each other. In Visual Object 

Tracking, correlation is the operation that is element-wise multiplication between the 

target's actual and predicted features. After a correlation operation, we get a response 

map. Generally, we apply a cosine window on the response map to get the peak values 

and smooth the other values. We define the location of the peak value as the target's new 

location. We can do correlation operations also in the Fourier domain. However, using 

Correlation Filters in Visual Object Tracking algorithms has drawbacks. The change of 

target scale and appearance (orientation and shape) can make the response value low. A 

better feature extraction method is needed to get better correlation results. [10] 

The most significant examples of Correlation Filters based tracking algorithms are 

Minimum Output Sum of Squared Error (MOSSE) [11], Circulant Structure Kernel 

(CSK) [12], and Kernelized Correlation Filters (KCF) [13]. First, MOSSE introduced 

Correlation Filters into the Visual Object Tracking area. In MOSSE, the grayscale images 

of adjacent frames are transformed into the Fourier Domain. Then, MOSSE applies a 

correlation operation on these frames. MOSSE runs very fast, but MOSSE is not 

successful enough because MOSSE uses the grayscale features. Second, CSK uses a 

gaussian kernel to calculate the correlation operation on the grayscale images. The 

accuracy of CSK is higher than MOSSE, but CSK is not successful enough, like MOSSE. 

Third, KCF algorithm uses HOG features and generates samples using cyclic shifts 

surrounding the target area. KCF filters the response of the cyclic matrices. The accuracy 

of KCF is higher than others, and KCF runs fast. However, KCF has limitations because 

the search area is fixed. Nowadays, Correlation Filters are used more as an auxiliary 

element in Visual Object Tracking algorithms. 

Deep Learning breakthrough positively affects Visual Object Tracking like Image 

Classification, Object Detection, and Instance Segmentation. Different neural networks 

such as CNN, RNN, and Siamese Neural Networks are used in Visual Object Tracking. 

Generic Object Tracking Using Regression Networks (GOTURN) [14], Recurrent YOLO 

(ROLO) [15], Simple Online and Realtime Tracking with a Deep Association Metric 

(DeepSORT) [16], and SiamFC [4] are the essential Deep Learning based Visual Object 

Tracking algorithms. First, GOTURN uses the architecture of the CaffeNet neural 
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network [17]. In GOTURN, the previous frame and the current frame pass through 

convolutional layers with the same weight. Later, the outputs of these convolutional 

layers are processed in fully connected layers. Then, GOTURN predicts the target's 

location within a search region. Second, ROLO combines a YOLO (You Only Look 

Once) [18] object detection neural network and Long-Short-Term Memory (LSTM) [19]. 

ROLO uses YOLO to detect objects and then predicts the target's location using LSTM 

recurrently. Third, DeepSORT extends Simple Online Real-Time Tracking (SORT) [20] 

tracking algorithms with Deep Learning. DeepSORT uses the Fast R-CNN (Region Based 

Convolutional Neural Networks) neural network [21] to detect objects. Then, the detected 

objects are matched with the previous frame information using Kalman Filter [6] and 

Hungarian Algorithm [22]. In recent works, Deep Learning is used to extract the target 

features or detect the target in Visual Object Tracking algorithms. 

 

2.3. Siamese Neural Networks Based Tracking 

 

Siamese Neural Networks get multiple inputs and generate a single output. The 

CNN part of the network has shared weights and applies the same weight on the inputs. 

The output is the similarity measurement of the inputs. Generally, Siamese Neural 

Networks take two inputs, and they are called Two-Channel Siamese Neural Networks. 

According to the learning aim, convolutional branches of the network could be changed, 

such as the AlexNet neural network [23] and the VGG neural network [24]. Siamese 

Neural Networks can be used in areas like duplicate detection, finding anomalies, and 

face recognition. In addition, there are successful Visual Object Tracking algorithms such 

as GOTURN [14], Siamese Instance Search for Tracking (SINT) [25], and SiamFC [4]. 

Section 2.3 includes the explanation of GOTURN, and Section 2.5 describes SiamFC. 

SINT processes the original target and the search region in Siamese Neural Networks. 

Then, a specific matching function removes the background from the search region and 

decides the target's new location. In recent years, Siamese Neural Networks have had 

good quantitative results in Visual Object Tracking [26].  
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2.4. Siamese Fully Convolutional Networks (SiamFC) 

 

Bertinetto et al. [4] introduced Siamese Fully Convolutional Networks in 2016. 

SiamFC combines Siamese Neural Networks and Correlation Filters tracking algorithms. 

Following sections, the Siamese Neural Networks architecture of SiamFC, cross-

correlation step in SiamFC, Hanning Window, scale update in SiamFC, and the 

limitations of SiamFC are explained. 

 

Figure 2.1 The architecture of SiamFC tracker [4] 

 

2.4.1. The Architecture Of SiamFC 

 

Figure 2.1 shows the architecture of SiamFC. The Siamese Neural Networks part 

of SiamFC is based on the AlexNet neural network [23] except for its convolution stage 

layers as a backbone. Table 2.3 shows these convolution stage layers in detail. 

Table 2.3 The convolution stage of the AlexNet neural network [4] 
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SiamFC takes two inputs which are Exemplar and Instance images. The difference 

between them is that the Instance image has 224 × 224 resolution, and the Exemplar 

image has 127 × 127 resolution. The convolution stage of the AlexNet neural network 

[23] extracts Deep-Learning-based features from the Exemplar and the Instance image by 

sharing the same weights. The Exemplar image is a target template, and it never changes 

during the tracking. However, the Instance image is a search image whose center is the 

target's center location. The Instance image area is always more extensive than the 

Exemplar image area.  

 Bertinetto et al. [4] employ a discriminative loss function approach. That means 

the pairs are divided into positive and negative pairs. Then the logistic loss of that pairs 

is calculated while training the neural network. Equation 2.25 calculates a pair's logistic 

loss where y is the ground-truth label, v is the real-value score. Equation 2.26 is the loss 

function, the mean of the individual losses where D is the score map. Exemplar and 

Instance images that are from the same sequence are ignored. Finally, the weights are 

updated using Stochastic Gradient Descent (SGD). 

 

𝑙(y, v) = log(1 + exp(−yv))   (2.25) 

L(y, v) =  |
1

D
| ∑ 𝑙(y[u], v[u])   (2.26) 

 

2.4.2. Cross-Correlation In SiamFC 

 

After features are extracted from the inputs, SiamFC has the Correlation Filter 

head, which measures the similarity of two feature data thanks to cross-correlation 

operation. Equation 2.27 is the formula of the cross-correlation operation. X is the Search 

Image as the current frame, and Z is the Exemplar image as the target template, the 

ground-truth representation in dataset sequence in SiamFC. 𝜙(⋅) is the function for the 

feature representation, and 𝐶𝑜𝑟𝑟(⋅) is the correlation operation. 𝑅(𝑍, 𝑋) denotes the 

similarity between the images. In SiamFC, the response map has 17 × 17 resolutions. 

R(Z, X) = Corr(ϕ(Z), ϕ(X))   (2.27)  
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2.4.3. Hanning Window 

 

Hanning Window is applied on the response map to get the maximum value near 

the center and sharpen the maximum value after generating a response map. Hanning 

Window is a window Function, and window functions are generally used for signal 

processing and statistics. Hanning Window, also called the Hann Filter or the Raised 

Cosine Window, was invented by Julius von Hann. The formula of the Hanning Window 

is shown in Equation 2.28.  

w(n) = 0.5 − 0.5 cos (
2πn

M−1
)  0 ≤ n ≤ M − 1  (2.28) 

 

2.4.4. Locating The Target's New Location 

 

After the Hanning Window is applied on the response map, we get a non-negative, 

smooth, and bell-shaped curve. There could be more than one peak on the result. 

However, the peak location whose maximum value is considered the target location in 

the current frame. Finally, an update processing step, including updating the target's 

location, shape, Instance, and Exemplar images’ size, exists. Figure 2.2 shows the 

successful example of SiamFC. 

SiamFC has a scale updating process to handle the target's scale changes. Three 

different sizes of Instance images are processed to detect the scale change. It means there 

are three response maps after the cross-correlation operation. The scale of the response 

map, which has the highest peak value, is selected as the target's new scale.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.2 Successful example of SiamFC tracker (a) exemplar image, (b) instance image, 

(c) result, (d) response map (green: ground-truth, blue: tracker result for the frame; red: 

high, blue: low for the heat map) 

 

2.4.5. The Limitations Of SiamFC 

 

Let us discuss the limitations of SiamFC. First, SiamFC does not have an online 

learning process. There is no control mechanism and learning a model according to the 

tracking situation during the object tracking process in SiamFC. Therefore, SiamFC 

always uses the same initial ground-truth at the first frame in the sequence as the target 

template. Second, Hanning Window creates a response map with the highest value near 

the center as the peak location when there are multiple peaks. Third, the target's trajectory 

is not considered while tracking. Thus, the target can be lost when an occlusion situation 

occurs, as shown in Figure 2.3.  
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In Figure 2.3, there are two objects which are a man, an actual target, and a boy 

riding a scooter in the Human3 sequence from the OTB-100 dataset [3]. An occlusion 

situation occurs at frame 28, and peaks of all objects are combined at that frame. Also, 

each object has a similar response after the cross-correlation operation, making the target 

lost in ongoing frames.  

 
Frame 25 

 

 
Frame 28 

 
Frame 33 

Figure 2.3 Failed example of SiamFC tracker. Results and response maps on Human3 

sequence for frames 25, 28, and 33 from the OTB-100 dataset using SiamFC tracker 

(green: ground-truth, blue: tracker result for frames; red: high, blue: low for heat maps) 

 

2.5. Kalman-Siam 

 

In recent years, because of the performance and speed of SiamFC, many follow-

up studies based on SiamFC are proposed. Zhou et al. [5] introduced Kalman-Siam, an 

improved version of SiamFC, and Kalman-Siam solves some of the limitations of 

SiamFC. The following sections explain the improvements of Kalman-Siam, the 

architecture of Kalman-Siam, the occlusion detection mechanism in Kalman-Siam, and 

the limitations of Kalman-Siam.  
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2.5.1. The Improvements Of Kalman-Siam 

 

There are three improvements in Kalman-Siam according to SiamFC. First, 

Kalman-Siam obtains the target's motion information, and Kalman Filter predicts the 

target's location in the next frame. Second, Kalman-Siam combines the different layers 

from the base network. This improvement increases the success rate because each 

network layer has a different response to the same input. Third, Kalman-Siam has an 

occlusion detection mechanism by using Kalman Filter and calculating the P parameter 

on the response map. Thanks to Kalman Filter, Kalman-Siam has a learning process based 

on the target's movement using the target's previous trajectory during tracking. This 

improvement makes Kalman-Siam an Online Tracking algorithm. According to the 

calculation, the box which Kalman Filter predicts can be selected. 

 

Figure 2.4 The architecture of the Kalman-Siam tracker [5] 

 

2.5.2. The Architecture Of Kalman-Siam 

 

The base neural network of Kalman-Siam and SiamFC are the same, and this is 

the AlexNet neural network [23]. Figure 2.4 shows the architecture of Kalman-Siam. 

However, there are two main differences in Kalman-Siam. First, although SiamFC crops 

the searched image according to the target's last know location, Kalman-Siam crops the 

searched image according to the prediction of Kalman Filter. Second, SiamFC applies 

cross-correlation operation on only the neural network outputs of Search and Exemplar 

image channels. However, Kalman-Siam applies cross-correlation operation on the 
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outputs from conv1, conv3, and conv5 layer of the Search and Exemplar image channels 

with the same layer. And then, the weighted sum of these three response maps makes a 

single response map using Equation 2.29. W and R represent the layer's weight and the 

layer's response map in the equation. High-level features can adapt to the target's 

transformation. On the other hand, low-level features have importance on locating the 

target. Therefore, the weights of these layer outputs are 0.2, 0.2, and 0.6, respectively. [5] 

R = ∑ (Wi Ri)i      (2.29) 

 

2.5.3. The Occlusion Detection Mechanism In Kalman-Siam 

 

Kalman-Siam has a solution when the target encounters an occlusion situation. To 

solve the situation, Kalman-Siam firstly tries to detect whether this situation occurs or 

not. For the detection, Kalman-Siam uses some unique parameters, P, 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒, and 

𝑃𝑟𝑎𝑡𝑖𝑜, shown in both Equation 2.30, Equation 2.31, and Equation 2.32. 

P =  
Rpeak−Rlow

mean(
R

Rmean
)
     (2.30) 

Paverage =
P(t−1)+P(t−2)+P(t−3)+P(t−4)

4
  (2.31) 

Pratio =
P

Paverage
     (2.32) 

P measures how distinctive the peak is in the response map. 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 takes the 

average for the last four frames. 𝑃𝑟𝑎𝑡𝑖𝑜 normalizes the magnitude of P dividing by 

𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒. R represents the response map. The value of the 𝑃𝑟𝑎𝑡𝑖𝑜 threshold is equal to 0.6. 

For better calculation, the value of the response map is normalized to between 0 and 1. 

Also, Kalman-Siam applies a threshold on the value of the response map with 0.3 to filter 

out the noise in the response map. Kalman-Siam calculates Equation 2.30, Equation 2.31, 

and Equation 2.32 and predicts the target's location using Kalman Filter. When complex 

tracking scenarios occur, the value of both P and 𝑃𝑟𝑎𝑡𝑖𝑜 are decreased. If the value of the 

𝑃𝑟𝑎𝑡𝑖𝑜 is lower than the threshold value, Kalman-Siam selects the target's location as the 

prediction of Kalman Filter in the current frame in the dataset sequence.  
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Frame 25 

 

 
Frame 28 

 

Frame 34 

Figure 2.5 Successful example of Kalman-Siam tracker. Results and response maps on 

Human3 sequence for frames 25, 28, and 34 from the OTB-100 dataset using Kalman-

Siam tracker (green: ground-truth, blue: tracker result for frames; red: high, blue: low for 

heat maps) 

2.5.4. The Limitations Of Kalman-Siam 

 

Even if Kalman-Siam has better results using the target's previous trajectory 

information thanks to Kalman Filter, some tracking processes can be challenging, such 

as rapid moves that change their direction to the opposite. For example, in Figure 2.6, 

there is a deer as the target is jumping. This sequence is tagged as the Fast Motion (FM) 

attribute, and the target moves fast along the y-axis. Kalman-Siam cannot handle this kind 

of movement. So, this target's movement makes its previous trajectory information 

insignificant. Also, there is another example in Figure 2.7. There is a man jumping rope 

in Figure 2.7, the target moves like the previous example. Moreover, the sequence is 

tagged as the Motion Blur (MB). Some frames are blurred, and the peak in their response 

map is not high enough. Therefore, the P parameter's value is low in these frames. Both 

motion blur and targets movement makes the P parameter insufficient to locate the target 

in the response map.   
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Frame 3 

 

 
Frame 4 

 

 
Frame 5 

 

 
Frame 6 

 

 
Frame 7 

 

 
Frame 8 

 

 
Frame 9 

 

 
Frame 10 

Figure 2.6 Failed example of Kalman-Siam tracker for Fast Motion labeled sequence. 

Results and response maps on Deer sequence for frames 3, 4, 5, 6, 7, 8, 9, and 10 from 

OTB-100 dataset using Kalman-Siam tracker (yellow: search window, green: ground-

truth, blue: tracker result for frames; red: high, blue: low for heat maps)  
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Frame 26 

 

 
Frame 27 

 

 
Frame 28 

 

 
Frame 29 

 

 
Frame 30 

 

 
Frame 31 

 

 
Frame 32 

 

 
Frame 33 

Figure 2.7 Failed example of Kalman-Siam tracker for Motion Blur labeled sequence. 

Results and response maps on Jumping sequence for frames 26, 27, 28, 29, 30, 31, 32, 

and 33 from OTB-100 dataset using Kalman-Siam tracker (yellow: search window, green: 

ground-truth, blue: tracker result for frames; red: high, blue: low for heat maps)  
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CHAPTER 3  

 

PROPOSED METHOD 

 

 

Bertinetto et al. [4] introduced SiamFC, and Zhou et al. [5] proposed Kalman-

Siam, an updated version of SiamFC with Kalman Filter and multi-feature fusion. 

Although we can get better results using Kalman-Siam, there are limitations of Kalman-

Siam, as mentioned in previous sections. Thus, we proposed an updated version of 

Kalman-Siam, including Adaptive Window Search and Kalman Filter, and replaced the 

P parameter with another parameter. We named this tracker as Adaptive-Kalman-Siam, 

and this chapter describes Adaptive-Kalman-Siam. 

 

3.1. The Architecture Of Adaptive-Kalman-Siam 

 

We developed Adaptive-Kalman-Siam based on Kalman-Siam. We kept the 

improvements of Kalman-Siam added to SiamFC. The first is estimating the target's 

location with its previous movement using Kalman Filter and determining the Search-

Window based on this prediction. The second is obtaining a better response map by 

combining the features in different correlated layers from the neural network. The third 

is determining whether there exists an occlusion situation by calculating on the obtained 

response map. If the calculated value is below a certain threshold, Kalman-Siam selects 

the prediction of Kalman Filter as the target's new location. 

 

Figure 3.1 The architecture of the proposed Adaptive-Kalman-Siam tracker  
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Figure 3.2 The flowchart of Adaptive Window Search algorithm  
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Figure 3.1 shows the architecture of Adaptive-Kalman-Siam. The updated part is 

demonstrated in the box named Adaptive Window Search. Figure 3.2 shows the flowchart 

of the Adaptive Window Search algorithm. Adaptive-Kalman-Siam uses 𝑇𝑆𝑒𝑎𝑟𝑐ℎ 

threshold, and we set 0.7. We determined this threshold value after the experiment of 

parameter searching. Adaptive-Kalman-Siam decides to start or continue Adaptive 

Window Search using 𝑇𝑆𝑒𝑎𝑟𝑐ℎ threshold. Suppose Adaptive-Kalman-Siam cannot obtain 

the processed search window successfully enough. In that case, it decides whether the 

estimated location of the Kalman Filter will be selected as the object's new location. The 

values to be used for comparison with this threshold are calculated as the APCE 

parameter. Also, we add another threshold which is 𝑇𝐾𝑎𝑙𝑚𝑎𝑛 and its value is set at 0.5 for 

storing the last APCE value and updating the Kalman Filter. This threshold is valid when 

Adaptive Window Search cannot find a suitable search window. Following Section 3.2 

and Section 3.3 describe the APCE parameter and Adaptive Window Search. 

 

3.2. Average Peak To Correlation Energy (APCE) 

 

Wang et al. [27] introduced the Average Peak Correlation Energy (APCE) 

parameter. Equation 3.1 shows the formula of APCE. We used the APCE parameter 

similar to the P parameter of Kalman-Siam, so the tracker calculates 𝐴𝑃𝐶𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 

𝐴𝑃𝐶𝐸𝑟𝑎𝑡𝑖𝑜 using the same formula for 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑃𝑟𝑎𝑡𝑖𝑜, shown in both Equation 3.2 

and Equation 3.3.  

APCE =  
|Fmax−Fmin|2

mean(∑ (Fw,h−Fmin)
2

w,h )
    (3.1) 

APCEaverage =
APCE(t−1)+APCE(t−2)+APCE(t−3)+APCE(t−4)

4
  (3.2) 

APCEratio =
APCE

APCEaverage
     (3.3) 

APCE indicates the fluctuated level of response maps and the confidence level of 

the detected target. 𝐴𝑃𝐶𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 takes the average for the last four frames. APCEratio, 

normalizes the magnitude of APCE dividing by 𝐴𝑃𝐶𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒. F represents the response 

map. 
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There are two main reasons why we prefer to use the APCE parameter rather than 

the 𝑃 parameter. First, the value range of the APCE parameter is wider than the value 

range of the P parameter. Second, the APCE parameter has more usage than the P 

parameter in tracking algorithms based on Correlation Filters.  

 

3.3. Adaptive Window Search 

 

Shin et al. [28] implemented a re-tracking mechanism on the KCF [13] tracking 

algorithm. This algorithm detects tracking failure and then re-tracks the target with new 

search windows using the eight different neighboring windows. Adaptive-Kalman-Siam 

has a similar process, but there exist 25 search windows that can be distinct and 

intersected. Thus, there are too many search windows. To prevent performance loss, the 

processing of these search windows is a specific priority. We define that the window 

centered on the target's last location is the base search window. Table 3.1 shows these 

search windows with their priority and distance to the base search window. The search 

windows that are closer to the center of the base search window have higher priority. We 

grouped these search windows that have the same priority. All search windows have the 

same height and width based on the target's last location. 

 

Table 3.1 The priority table of the search windows 

Search Window Number 

Distance to the Last Location 

According to Search Window Size  

(w=Search Window width, 

h=Search Window height) 

Priority 

5 (0,0) Highest 

10, 11, 12, 13, 14, 15, 16, 17 (±0.25 w, ±0.25 h) High 

18, 19, 20, 21, 22, 23, 24, 25 (±0.5 w, ±0.5 h) Medium 

1, 2, 3, 4, 6, 7, 8, 9 (±1 w, ±1 h) Low 
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The peak value of a response map could exist near the border of a search window. 

However, optimally the peak value should be around the center of the search window. 

Applying the Hanning Window filter to a response map makes the high value near the 

peak value. Figure 3.3 shows the high-priority search windows. Therefore, intersected 

search windows in Adaptive-Kalman-Siam reduces the risk of smoothing the peak of the 

actual tracked target near the border of a search window. We defined points far from the 

center of the base search window at 25 percent and 50 percent of the dimensions of the 

base search window. We made these points the center point of the intersecting search 

windows. Both Figure 3.4 and Figure 3.5 show these center points of intersected search 

windows. 

 

 

Figure 3.3 The distinct search windows. The center of the base search window (5) and 

the other search windows as the distinct neighbor of the base search window (1, 2, 3, 4, 

6, 7, 8, 9)  
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Figure 3.4 The center of the base search window (5), the center points of intersected 

search windows (18, 19, 20, 21, 22, 23, 24, 25) are away from the center of the base 

search window by 50 % of the height/width.  

 

 

Figure 3.5 The center of the base search window (5), The center points of intersected 

search windows (10, 11, 12, 13, 14, 15, 16, 17) are away from the center of the base 

search window by 25% of the height/width.  
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Figure 3.6 Distance from the target's last known location to 

each prioritized search window groups 

 

Figure 3.6 shows how much the groups of prioritized search windows are far away 

from the target's last know location. The distances of each group are proportional to 

search window dimensions. In addition, Figure 3.6 allows us to see the ratios of distances 

between each other. As we can see, the re-tracking possibility of the proposed Adaptive 

Kalman-Siam increases when the distance increases. However, using more possible 

search windows decrease the general execution time performance of the re-tracking 

algorithm. Therefore, we limit the size of possible search windows. 

 

Figure 3.7 shows that Adaptive-Kalman-Siam started the Adaptive Window 

Search process at frame 10, then choosing search window 5. At that frame, although the 

𝐴𝑃𝐶𝐸𝑟𝑎𝑡𝑖𝑜 of the Kalman-Siam is 0.66, the 𝐴𝑃𝐶𝐸𝑟𝑎𝑡𝑖𝑜 of the search window with number 

5 is 0.86. Therefore, the Adaptive Window Search process is finished, and the target was 

not lost.  
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Frame 3 

 

 
Frame 4 

 

 
Frame 5 

 

 
Frame 6 

 

 
Frame 7 

 

 
Frame 8 

 

 
Frame 9 

 

 
Frame 10 

Figure 3.7 Example of Adaptive-Kalman-Siam tracker for Fast Motion labeled sequence. 

Results and response maps on Deer sequence for frames 3, 4, 5, 6, 7, 8, 9, and 10 from 

OTB-100 dataset using Adaptive-Kalman-Siam tracker (yellow: search window, green: 

ground-truth, blue: tracker result for frames; red: high, blue: low for heat maps) 

 

The Adaptive Window Search process is started at frame 30 in Figure 3.8, then 

search window 5 is selected. When the 𝐴𝑃𝐶𝐸𝑟𝑎𝑡𝑖𝑜 of the Kalman-Siam is 0.51, the 

𝐴𝑃𝐶𝐸𝑟𝑎𝑡𝑖𝑜 of the search window with number 5 is 0.90. Thus, the Adaptive Window 

Search process is finished, and tracking is continuing.  
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Frame 26 

 

 
Frame 27 

 

 
Frame 28 

 
Frame 29 

 

 
Frame 30 

 

 
Frame 31 

 

 
Frame 32 

 

 
Frame 33 

Figure 3.8 Example of Adaptive-Kalman-Siam tracker for Motion Blur labeled sequence. 

Results and response maps on Jumping sequence for frames 26, 27, 28, 29, 30, 31, 32, 

and 33 from OTB-100 using Adaptive-Kalman-Siam tracker (yellow: search window, 

green: ground-truth, blue: tracker result for frames; red: high, blue: low for heat maps)  
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CHAPTER 4  

 

BENCHMARKING VISUAL OBJECT TRACKING 

 

 

There exist a lot of datasets, evaluation metrics, and strategies for benchmarking 

Visual Object Tracking algorithms. This chapter examines how to measure the 

performance of these algorithms. In addition, this chapter describes which evaluation 

metrics we can use to compare the performances of these algorithms. Moreover, this 

chapter introduces which datasets we can use while evaluating these algorithms. 

 

4.1. Evaluation Metrics 

 

There exist three different evaluation strategies. These evaluation strategies are 

One Path Evaluation (OPE), Temporal Robustness Evaluation (TRE), and Spatial 

Robustness Evaluation (SRE) in Visual Object Tracking. We select OPE evaluation 

strategy to evaluate tracking algorithms. In OPE, we initialize these algorithms with only 

the first ground-truth for each dataset sequence. We do not manipulate the process of 

these algorithms until the sequence ends during tracking. [3] 

This section describes standard evaluation metrics for Visual Object Tracking 

algorithms: Intersection over Union (IoU), Center Location Error, Success, and Precision. 

 

4.1.1. Intersection Over Union (IoU) 

 

Intersection over Union (IoU) can be measured as target area overlap ratio 

between the ground-truth and the predicted target, as shown in Equation 4.1 and 

demonstrated in Figure 4.1. The IOU compares only the similarity of target 

representations, not depending on the target scale. However, there exists a drawback in 

using IOU because it does not measure the distance from the ground-truth and the 

predicted target. For example, the values of the IOU of two shapes are the same and equal 

to zero in Figure 4.2, although these shapes do not intersect with each other.  
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IoU =  
|A ∩ B|

|A ∪ B|
 

Equation 4.1 Rectangular A and B for IoU calculation 

 

 

Figure 4.1 IoU of two rectangular areas 

 

 
(a) 

 
(b) 

Figure 4.2 The problem of IoU (a) the shapes are close to each other, 

(b) the shapes are far from each other 

 

4.1.2. Success 

 

We can calculate Success as the ratio of the number of frames that the target's IoU 

value is higher than or equal to the overlap ratio thresholds. These thresholds are ranging 

from 0 to 1 increasingly. As usual, we select 0.5 as the overlap ratio threshold to rank 

object tracking algorithms. Later, we can plot the calculated values of Success with all 

overlap ratio thresholds in a graph as a Success plot. In Figure 4.3, we can see an example 

of the Success Plot of SiamFC tracker on OTB-100 dataset [3] using OPE strategy.  
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Figure 4.3 Success Plot of SiamFC tracker on the OTB-100 dataset using OPE strategy  

 

4.1.3. Center Location Error 

 

We can calculate Center Location Error as the average Euclidean distance 

between the center locations of the ground-truth and the predicted, as demonstrated in 

Equation 4.2. In the equation, there are 𝑝1 and 𝑝2 points and the coordinate values of these 

points on the x-axis and the y-axis. The value of Center Location Error increases if we 

tend to lose the tracking target. Thus, we grouped center position distances by different 

thresholds. Center Location Error is the base of the Precision evaluation metric. 

d(p1, p2) = √(x1 − x2)
2 + (y1 − y2)

2  (4.2)  



36 

  

4.1.4. Precision 

 

We can calculate Precision as the ratio of the number of frames that the Center 

Location Error is lower than the threshold. These thresholds are ranging from 0 to 51 

increasingly. As usual, we select 20 as the pixel distance threshold to rank object tracking 

algorithms. Thus, when the value of Precision is high, the distance, which is from the 

target estimated center and the ground-truth center, ranges from 20 pixels in most frames. 

Later, we can plot the calculated values of Precision with all center location error 

thresholds in a graph as a Precision plot. In Figure 4.4, we can see an example of the 

Precision Plot of the SiamFC tracker on the OTB-100 dataset [3] using OPE strategy. 

 

Figure 4.4 Precision Plot of SiamFC tracker on the OTB-100 dataset using OPE strategy  

 

4.2. Datasets 

 

We can evaluate object tracking algorithms on several datasets. The OTB-100 [3] 

and TC-128 [8] datasets are the most used ones, so we selected these datasets to evaluate 

our proposed tracking algorithm and analysis the result. Also, we prepared two new 

datasets whose sequences we selected from OTB-100 and TC-128 standard datasets 

especially. Later, we run our proposed algorithm on these datasets and analysis the results.  
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4.2.1. Object Tracking Benchmark (OTB) 

 

Wu et al. [3] proposed the Object Tracking Benchmark (OTB) dataset in 

CVPR2013. The purpose of the dataset is to benchmark online object tracking algorithms. 

OTB dataset has a hundred sequences and OTB dataset has 4 different versions: OTB-

2013, OTB-2015, OTB-50, and OTB-100. Researchers actively use OTB-50 and OTB-

100. The target representation of the dataset is a box, and the ground-truths of each 

sequence have (x, y, box-width, box-height) format. Except for Jogging and Skating2 

sequences, the dataset has only one ground-truth box for each sequence. The sequences 

of the OTB dataset are tagged with eleven attributes, as described in Table 1.1. Also, 

Figure 4.5 shows the example images from different sequences in the OTB-100 dataset. 

  

  

Figure 4.5 Example images from BlurCar2, David, Skating1, 

and Woman sequences in OTB-100 dataset (red: ground-truth)  
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4.2.2. Temple Color (TC-128) 

 

Liang et al. [8] proposed the TC-128 dataset to evaluate object tracking 

algorithms, especially color-enhanced ones. TC-128 dataset consists of 128 sequences. 

Like the OTB dataset, the target representation of the TC-128 dataset is a box. The 

ground-truths of each sequence have (x, y, box-width, box-height) format, and the dataset 

has only one ground-truth box for each sequence except the Jogging sequence. Also, the 

TC-128 dataset tags its sequences with the same eleven attributes like the OTB dataset. 

These attributes are shown and described in Table 1.1. Also, Figure 4.6 shows the 

example images from different sequences in the TC-128 dataset. 

  

  

Figure 4.6 Example images from Airport_ce, Bolt, Coke, 

and Pool_ce1 sequences in TC-128 dataset (red: ground-truth)  



39 

  

4.2.3. Special Selected Dataset 

 

We selected fifteen sequences from each of the OTB-100 [3] and TC-128 [8] 

datasets. Our sequence selection criterion was selecting sequences that are tagged with at 

least one of the following attributes. These attributes were BC (Background Clutters), FM 

(Fast Motion), MB (Motion Blur), OCC (Occlusion) attributes. We chose these attributes 

especially because these complex tracking scenarios are relatively open to improvement. 

Both Table 4.1 and Table 4.2 show these sequences. We named these selected sequences 

from the OTB-100 and the TC-128 datasets as IZTECH15-OTB and IZTECH15-TC 

datasets. 

Table 4.1 Sequences in IZTECH15-OTB dataset 

Sequence Attributes 

Human3 SV, OCC, DEF, OPR, BC 

Surfer SV, FM, IPR, OPR, LR 

Boy SV, MB, FM, IPR, OPR 

Deer MB, FM, IPR, BC, LR 

Jumping MB, FM 

Tiger1 IV, OCC, DEF, MB, FM, IPR, OPR 

Basketball IV, OPR, OCC, DEF, BC 

KiteSurf IV, OCC, IPR, OPR 

Coke IV, OCC, FM, IPR, OPR, BC 

Suv OCC, IPR, OV 

DragonBaby SV, OCC, MB, FM, IPR, OPR, OV 

Human4 IV, SV,OCC,DEF 

Trellis IV, SV, IPR, OPR, BC 

CarDark IV, BC 

Human7 IV, SV, OCC, DEF, MB, FM 

IV: Illumination Variation   SV: Scale Variation   OCC: Occlusion 

DEF: Deformation   MB: Motion Blur    FM: Fast Motion 

IPR: In-Plane Rotation   OPR: Out-of-Plane Rotation  OV: Out-of-View 

BC: Background Clutters   LR: Low Resolution  



40 

  

Table 4.2 Sequences in IZTECH15-TC dataset 

Sequence Attributes 

Railwaystation_ce OCC, IPR, BC 

Messi_ce SV, OCC, DEF, MB, IPR, BC 

Face_ce2 IV, OCC, MB, IPR, OPR, FM 

Busstation_ce1 OCC, BC 

Boy OPR, SV, MB, FM, IPR 

Bicycle IV, SV, BC 

Deer MB, FM, IPR, BC 

Tiger1 IV, OPR, OCC, DEF, MB, FM, IPR 

Basketball IV, OPR, OCC, DEF, BC 

Busstation_ce2 OCC, IPR, OPR, BC 

Hurdle_ce2 DEF, FM, BC 

Michaeljackson_ce IV, DEF, FM, IPR, OPR 

Badminton_ce2 DEF, MB, OPR 

Skyjumping_ce IV, SV, DEF, FM, OPR 

Trellis IV, OPR, SV, IPR, BC 

IV: Illumination Variation   SV: Scale Variation   OCC: Occlusion 

DEF: Deformation   MB: Motion Blur    FM: Fast Motion 

IPR: In-Plane Rotation   OPR: Out-of-Plane Rotation  OV: Out-of-View 

BC: Background Clutters   LR: Low Resolution  
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CHAPTER 5  

 

RESULTS AND ANALYSIS 

 

 

This chapter shows the overall Precision and Success results of SiamFC [4], 

Kalman-Siam [5], and Adaptive-Kalman-Siam on OTB-100 [3], TC-128 [8], IZTECH15-

OTB, and IZTECH15-TC datasets using OPE strategy. In addition to Precision and 

Success, we will compare the execution time performance of these trackers. However, we 

will explain how we obtain the results before the results and their analysis. 

 

5.1. Implementation 

 

We implemented SiamFC, Kalman-Siam, and Adaptive-Kalman-Siam tracking 

algorithms using the PyTorch Deep Learning library. We did not train any neural 

networks and only used the pre-trained weights of the SiamFC. We ran these tracking 

algorithms in the GPU-powered cloud using Google Collab to get the overall results on 

OTB-100, TC-128, IZTECH15-OTB, and IZTECH15-TC datasets  

 

5.2. Overall Results 

 

In our experiments, the results of SiamFC are higher than the other tracking 

algorithms because we do not have the actual implementation and pre-trained weights for 

the Kalman-Siam. Thus, we implemented Kalman-Siam according to its article, and we 

used pre-trained weights for SiamFC. Our proposed tracking method gets better results 

than our Kalman-Siam implementation. Both Figure 5.1, Figure 5.2 show the results of 

SiamFC, Kalman-Siam, and Adaptive-Kalman-Siam on OTB-100 and TC-128 datasets. 

Adaptive-Kalman-Siam is approximately 5 and 10 percent more successful than the 

Kalman-Siam, respectively.  
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Figure 5.1 The precision and success plot of SiamFC, Kalman-Siam, 

and Adaptive Kalman-Siam on the OTB-100 dataset using OPE strategy 

 

  

Figure 5.2 The precision and success plots of SiamFC, Kalman-Siam, 

and Adaptive Kalman-Siam on the TC-128 dataset using OPE strategy  
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5.3. Attribute-Specific Results 

 

The Adaptive-Kalman-Siam achieves better results than the SiamFC and the 

Kalman-Siam in IZTECH15-OTB and IZTECH15-TC datasets with specially selected 

sequences by approximately 30 percent. Both Figure 5.3 and Table 5.1 show the overall 

results of three trackers on the IZTECH15-OTB dataset. Both Figure 5.4 and Table 5.2 

show the overall results of three trackers on the IZTECH15- TC dataset. 

Adaptive-Kalman-Siam achieves even better results, especially in sequences 

tagged with BC (Background Clutters), FM (Fast Motion), MB (Motion Blur), and OCC 

(Occlusion) attributes. Both Table 5.3 and Table 5.4 show the results in IZTECH15-OTB 

and IZTECH15-TC datasets consisting of sequences labeled with these attributes.  

Thanks to Kalman-Siam's improvements on SiamFC, Kalman-Siam performs 

better than SiamFC in sequences tagged with BC (Background Clutters) and OCC 

(Occlusion) attributes tagged sequences. However, the proposed Adaptive-Kalman-Siam 

is more successful in these attributes than Kalman-Siam. Moreover, the Adaptive 

Window Search algorithm solves the occlusion problem better than Kalman-Siam. 

However, Kalman-Siam already has an occlusion detection mechanism. Also, Adaptive 

Kalman-Siam's APCE parameter is better than Kalman-Siam's P parameter for locating 

the target in a response map in sequences tagged with BC (Background Clutters) and 

tracking small-sized targets. 

Kalman-Siam's contribution to SiamFC has a low effect on challenging sequences 

tagged with FM (Fast Motion) and MB (Motion Blur) attributes. Also, Kalman-Siam 

achieves a little less success than SiamFC in these sequences. However, the proposed 

Adaptive-Kalman-Siam holds the least SiamFC success rate in these sequences and is 

even more successful. When the target's acceleration is not constant or the target's 

movement direction changes suddenly, Kalman-Siam's Kalman Filter estimation can 

have a negative effect. Also, when the search window is blurred because of the target's 

motion, the P parameter is not high enough to locate the target in the response map. The 

proposed Adaptive-Kalman-Siam's Adaptive Window Search solves these problems.   
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Figure 5.3 The precision and success plots of SiamFC, Kalman-Siam, 

and Adaptive Kalman-Siam on the IZTECH15-OTB dataset using OPE strategy 

 

  

Figure 5.4 The precision and success plots of SiamFC, Kalman-Siam, 

and Adaptive Kalman-Siam on the IZTECH15-TC dataset using OPE strategy  
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Table 5.1 The evaluation results of SiamFC, Kalman-Siam, 

 and Adaptive Kalman-Siam on the IZTECH15-OTB dataset using OPE strategy  

Tracker Precision (t=21) Success (t<=0.5) FPS 

SiamFC 0.647 0.532 85.020 

Kalman-Siam 0.738 0.466 35.310 

Adaptive-Kalman-Siam 0.863 0.624 36.010 

 

Table 5.2 The evaluation results of SiamFC, Kalman-Siam,  

and Adaptive Kalman-Siam on the IZTECH15-TC dataset using OPE strategy 

Tracker Precision (t=21) Success (t<=0.5) FPS 

SiamFC 0.609 0.433 82.350 

Kalman-Siam 0.671 0.476 37.300 

Adaptive-Kalman-Siam 0.884 0.632 34.590 
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Table 5.3 The precision and success plots of SiamFC, Kalman-Siam, and Adaptive 

Kalman-Siam on the IZTECH15-OTB dataset using OPE strategy for specific attributes 

Name Precision Success 

Background 

Clutters 

(BC) 

 

  

Fast Motion 

(FM) 

  

Motion 

Blur 

(MB) 

  

Occlusion 

(OCC) 
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Table 5.4 The precision and success plots of SiamFC, Kalman-Siam, and Adaptive 

Kalman-Siam on the IZTECH15-TC dataset using OPE strategy for specific attributes 

Name Precision Success 

Background 

Clutters 

(BC) 

 

  

Fast Motion 

(FM) 

  

Motion 

Blur 

(MB) 

  

Occlusion 

(OCC) 
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5.4. Performance Comparison 

 

We calculated our performance metrics as Frame per Second (FPS). According to 

our results, Adaptive-Kalman-Siam works at approximately the same speed as Kalman-

Siam. On the other hand, SiamFC runs at approximately twice the speed of both Kalman-

Siam and Adaptive-Kalman-Siam. However, Kalman-Siam and Adaptive-Kalman-Siam 

work at about 35 FPS, and it means real-time. 

 

5.5 Ablation Study  

 

We did an ablation study with three different versions of the proposed tracker 

during the development of the proposed Adaptive-Kalman-Siam tracker. These are 

Adaptive-Kalman-Siam with P parameter, Adaptive-Kalman-Siam with only distinct 

search windows, and Adaptive-Kalman-Siam with a single threshold which means 

𝑇𝐾𝑎𝑙𝑚𝑎𝑛 is now used in the algorithm. Both Figure 5.5 and Figure 5.6 show the results on 

the IZTECH15-OTB and IZTECH15-TC datasets. In addition, both Table 5.5 and Table 

5.6 show the comparison with SiamFC and Kalman-Siam. Each of the improvements of 

the proposed Adaptive Kalman-Siam affects the tracker's accuracy positively.  
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Figure 5.5 The precision and success plots of the ablation study 

on the IZTECH15-OTB dataset using OPE strategy 

 

  

Figure 5.6 The precision and success plots of the ablation study 

on the IZTECH15-TC dataset using OPE strategy  
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Table 5.5 The ablation study results on the IZTECH15-OTB dataset using OPE strategy 

Tracker Precision (t=21) Success (t<=0.5) 

SiamFC 0.647 0.532 

Kalman-Siam 0.738 0.466 

Adaptive-Kalman-Siam 0.863 0.624 

Adaptive-Kalman-Siam-P 0.726 0.522 

Adaptive-Kalman-Siam-Distinct 0.683 0.507 

Adaptive-Kalman-Siam-Single 0.816 0.592 

 

Table 5.6 The ablation study results on the IZTECH15-TC dataset using OPE strategy 

Tracker Precision (t=21) Success (t<=0.5) 

SiamFC 0.609 0.433 

Kalman-Siam 0.671 0.476 

Adaptive-Kalman-Siam 0.884 0.632 

Adaptive-Kalman-Siam-P 0.819 0.586 

Adaptive-Kalman-Siam-Distinct 0.860 0.610 

Adaptive-Kalman-Siam-Single 0.870 0.627 
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CHAPTER 6  

 

CONCLUSION 

 

 

Although SiamFC is a successful Visual Object Tracker based on Siamese Neural 

Networks, it is not successful enough in complex tracking scenarios such as Occlusion. 

The main reason is that SiamFC does not have an online learning process while tracking. 

Therefore, for complex tracking scenarios, the tracker should detect the target's situations 

change during tracking. However, thanks to Kalman-Siam, the previous object trajectory 

is used with the Kalman Filter. Also, Kalman-Siam defines the occlusion state with the P 

parameter calculation made on the response map. In addition, Kalman-Siam uses a 

combined neural network output from different feature levels. These improvements make 

Kalman-Siam have better accuracy than SiamFC in complex tracking scenarios, 

especially Occlusion. Also, we developed an adaptive search window algorithm on 

Kalman-Siam for complex tracking scenarios, and it took one step ahead.  

The main improvement of our proposed tracker is obtaining search windows 

according to the target's last location when re-tracking is required. Then, our proposed 

tracker uses these search windows according to the distance to the target's last location. 

Furthermore, the proposed tracker uses a threshold for the re-tracking process. We 

selected the APCE calculation as the parameter rather than the P calculation from 

Kalman-Siam for the threshold. Then, we got more efficient results by using the APCE 

parameter instead of the P parameter. Finally, we proved the success score of the 

improvements of our proposed tracking method by conducting experiments. As a result, 

we achieved the same running time performance with Kalman-Siam. Furthermore, we 

achieved more successful results than Kalman-Siam for complex tracking scenarios such 

as Occlusion, Fast Motion, Background Clutters, and Motion Blur.  
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